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Filter-Based Zeroth-Order Methods for Voltage
Control in Distribution Grids: A Practical Approach

Subir Majumder, Member, IEEE, Xin Chen, Member, IEEE, Le Xie, Fellow, IEEE

Abstract—Voltage regulation in power distribution systems
with renewable distributed energy resources (DERs) faces sig-
nificant scalability challenges. Model-free zeroth-order (ZO)
optimization methods offer a promising solution by generat-
ing control signals through direct interaction with the system.
However, practical deployment is hindered by noisy gradient
estimates, which stem from both the necessary controller-injected
disturbances and the impracticality of sampling random variables
from standard distributions used in ZO literature. To address
these issues, we propose a novel ZO projected gradient method
that integrates high-pass and low-pass filters. Specifically, a
residual feedback mechanism emulates high-pass filtering, while
the ‘momentum’ term, usually used to accelerate the convergence
of a gradient-based method, has been utilized to mimic the low-
pass filter. Additionally, as an alternative to traditional random
sampling, we introduce a sinusoidal-based sampling technique
inspired by extremum-seeking control theory and demonstrate
that under this new setting, existing zeroth order estimators still
provide gradient estimates of the controller objective. Simulation
results on a large-scale Austin Grid test feeder, using realistic
datasets, demonstrate that the proposed controller not only
integrates seamlessly with existing slow-acting voltage regulation
devices but also exhibits robustness against cyber-attacks. These
findings suggest that the controller can be reliably deployed in
modern power systems, improving scalability and resilience.

Index Terms—Model-free control, projected gradient descent,
voltage control, zeroth-order methods.

I. INTRODUCTION

W ITH the increasing integration of distributed renewable
energy resources (DERs) into distribution systems, the

need for scalable algorithms to manage voltage control has
become crucial. The future power distribution grid would often
include diverse devices, vendors, technologies, and ownership
structures and require solutions that support plug-and-play
operations while minimizing communication needs [1]. Local
control solutions may offer these advantages, but vanilla local
control approaches may not always guarantee optimality due
to their primarily droop-based nature. However, there are other
classes of local control approaches that estimate gradients
based on measurements from the power systems. These al-
gorithms do not require coordination with other controllers,
do not require model information, but guarantee optimality
[2]–[4].

The widespread deployment of smart meters and informa-
tion and communication technologies (ICTs) paves the way
for determining control actions based on broadcasted signals.
One alternative to using data-driven/model-free methods for
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estimating gradients will be using Reinforcement learning
(RL) to generate the control signal. While RL methods have
gained significant attention in recent years (see [5] for a
thorough literature review), these algorithms face several fun-
damental limitations, including safety requirements, scalability
issues, training efficiency, and limited theoretical guarantees.
On the other hand, zeroth-order (ZO) methods (also known
as extremum-seeking control) are data-driven local control
methods that learn the gradient of an objective function only
based on function evaluations or system measurements [6].
Therefore, these algorithms are free from the limitations of
RL-based control and have gained considerable attention for
solving optimal model-free control problems [7]. Moreover,
ZO control methods can self-adapt to dynamic environments,
such as fluctuating renewable generation and changing power
network topology, and operate in a plug-and-play fashion, with
theoretical performance guarantees on stability and robustness
[8]. ZO control has been applied in various domains, such
as distribution network voltage control [2], [4], [9]–[11],
maximum power point tracking in solar systems [12], building
HVAC system control [11], continuous bandit games [13] and
hardware-in-the-loop systems [14].

Other approaches comparable to local control approaches
with advantages such as plug-and-play capability, privacy
preservation, etc., are distributed approaches [15]. Unlike
zeroth-order approaches that estimate the gradient using only
power system measurements, distributed methods are model-
based. In these approaches, each controller partaking in dis-
tributed control possesses information about a specific part
of the power network and coordinates with other controllers
to generate the final control signal. However, the accuracy
of power network models is often limited. Recent feedback-
based algorithms [16]–[19] can help mitigate this limitation
by combining data-driven feedback with model-based control.
The three approaches are compared in the following table:

TABLE I: Comparing Zeroth-Order Methods, Reinforcement
Learning, and Distributed Control.

Feature/Method Zeroth-Order Reinforcement Distributed
Methods Learning Control

Model-free operation ✓ ✓
Scalability ✓ ✓
Theoretical guarantee ✓ ✓
Plug-and-play ✓ ✓

Based on the number of function evaluations made dur-
ing each iteration, ZO methods can be classified into two
categories: single-point and multi-point [20]. To compare
these two methods, consider a typical minimization problem
[21]: minx∈Rn h(x), where the function h(·) is differentiable,
and typical way of solving this unconstrained minimization
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problem is using gradient descent (GD) approach, defined as,
xk+1 = xk−ηk∇h(xk), where, ηk is the step size at iteration
k. If the gradient is unknown and only function evaluations are
available, then the gradient could be estimated using single-
point and two-point estimators — given as G

(1)
h (x; δ, u) =

n
δ h(x + δu)u and G

(2)
h (x; δ, u) = n

δ (h(x+ δu)− h(x))u,
respectively. Here, u is a random variable drawn from the unit
sphere or normal distribution, and δ is the smoothing radius.
While second and multi-point methods are better because the
variances in ZO estimators are small with small δ, it is difficult
to obtain function evaluation at two or more points in an
online optimization and dynamic control setting. Nevertheless,
algorithms close to two-point zeroth-order methods have been
applied in [11], [22].

First-order methods also carry a resemblance with ex-
tremum seeking (ES) control, where, based on averaging
theory, the controller estimates true gradient. ES control often
utilizes filters to obtain the gradient with higher accuracy, and
in a recent work [21] borrows the idea of high-pass and low-
pass filters and develops a novel SZO method called HLF-
SZO (High/Low-pass Filter SZO). Note that our controller
still operates in discrete time-space. The HLF-SZO method
achieves the fastest convergence in the category of SZO
methods to date, with both theoretical guarantees and empirical
demonstration for unconstrained cases. However, their perfor-
mances are unknown in constrained optimization problems,
an essential requirement to apply the HLF-SZO method to the
power distribution system voltage control. For convergence
analysis, the authors in [21] make a few assumptions in the
problem settings. These theoretical assumptions are rarely
present in their entirety in the real world, and therefore, this re-
search bridges the gap between theoretical work and practical
applications for the proposed HLF-SZO-based voltage control
considering a realistic distribution network.

Other Relevant Literature. In the algorithmic development
side, there have been recent advances in gray-box algorithm
[23], which utilizes zeroth-order methods in conjunction with
model-based algorithms. There have also been advances in
mixing distributed approaches utilizing gradients estimated
through zeroth-order dynamics [24]. There have been devel-
opments in ensuring the safety of extremum-seeking methods
utilizing the practical positivity of an unknown barrier function
[25]. To the best of our knowledge, the convergence guarantee
of constrained HLF-SZO methods in a practical setting has
largely been absent.

Contributions. Accurate real-time power distribution net-
work models, including switch status, transformer tap infor-
mation, and locations of generating resources, are not always
available because of Critical Energy/Electric Infrastructure
Information (CEII) limitations. In this paper, we adapt the
HLF-SZO method developed in [21] for solving the optimal
voltage control (OVC) problem in realistic distribution systems
in a model-free manner. The main contributions of this paper
are summarized as follows:
(1) From an algorithmic development perspective, we present

two main contributions. First, in ZO algorithms, random
numbers are typically selected either from a Gaussian
distribution or from points on the unit sphere, both of
which pose implementation challenges. To address this,

we draw inspiration from ES control and use sinusoidal
functions as random number generators. However, we
find that the resulting joint distribution is primarily con-
centrated on the surface of a unit hypercube. When using
random numbers drawn from this surface, the expected
value and variance of the ZO estimator become difficult
to characterize. Second, the HLF-SZO method introduced
in [21] addresses only simple unconstrained optimization
problems. Extending it to constrained settings is non-
trivial due to the lack of convergence guarantees for
projected gradient descent under a ZO framework. This
paper establishes the convergence properties for both the
SZO-PGD algorithm and SZO-PGD variants incorporat-
ing high-pass filters.

(2) While we have shown that both the SZO-PGD algorithm
and its variants converge, comparing their performances
was challenging without making several assumptions
about the properties of the objective function. To address
this issue, we conducted extensive numerical experiments
to evaluate the performance of the algorithms under
different conditions. To further validate controller perfor-
mance in a realistic setting, we developed a high-fidelity
testbed simulator using OpenDSS [26] and implemented
a realistic three-phase unbalanced 127-node distribution
feeder model based on data from Austin, Texas, with
realistic load and generation profiles. The code and data
will be made available as open-source1. Additionally, we
conducted extensive tests to demonstrate the robustness of
our algorithm against various scenarios, including time-
varying system dynamics, noisy measurements and cyber-
attacks such as Denial of Service (DoS) attacks. We
also show that the proposed algorithm can self-adapt to
changing system conditions and operate in a plug-and-
play manner.

The remainder of this paper is structured as follows. Section
II formulates the voltage control problem and develops the
SZO-based voltage control algorithms. Section ?? describes
the testbed and the configuration of the Austin distribution
feeder. Section III-A presents the numerical experiment results,
and Section IV concludes this work.

Notation. Unbolded lower-case letters are used for scalars,
and bolded lower-case letters are for vectors. ||(·)|| denotes
the L2 norm of a vector.

II. PROBLEM FORMULATION AND ALGORITHMS

In this section, we introduce the OVC problem formulation
and present the zeroth-order control algorithms with high-pass
and low-pass filters.

A. Optimal Voltage Control in Power Distribution System
Consider a three-phase unbalanced power distribution net-

work with the set of monitored bus M and the set of
controllable bus C. Each bus j ∈ M has real-time voltage
measurement vmeas

j,ϕ at each available phase ϕ ∈ {A,B,C}.
The reactive power injection qϕi of phase ϕ at each controllable
bus i ∈ C is the decision variable and can be controlled sepa-
rately across phases for voltage regulation. Let qi := (qϕi )∀ϕ be

1Not included to preserve anonymity per the journal’s policy.
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the vector that collects the per-phase reactive power injections
at bus i. The OVC problem is formulated as model (1):

min
q

h(q) := c
∑

∀j∈M

∑
∀ϕ

(vj,ϕ(q)− vspj )2 +
∑
∀i∈C

∑
∀ϕ

di(q
ϕ
i )

2,

(1a)
s.t. qi ∈ Qi, i ∈ C. (1b)

Here, c and di (typically ≥ 0) are the cost parameters
associated with voltage deviation and for providing reactive
power support. vspj is the specified desired voltage level of
bus j (this is often set close to 1 pu, but real-world scenarios
might involve varying setpoints based on operational needs,
loads, or renewable generation variability), around which the
voltage should be maintained. The objective function (1a)
encompasses two components: the deviation of the observed
voltage magnitudes at the monitored buses j ∈ M, and
the opportunity cost associated with participating in voltage
regulation (cost for not providing active power) [1] at the
controllable buses i ∈ C. The decision variable qi at each bus
i ∈ C in (1b) is constrained by the feasibility set Qi (could be
coupled across phases), which represents the power capacity
of individual devices and is defined by (2)-(3):

q := (qi)∀i∈C , Q :=
∏
∀i∈C

Qi.

There are two types of controllable devices whose reactive
power injections can be adjusted for voltage control.

(i) Devices that only inject reactive power: This type
includes devices such as Static Var Compensators (SVCs)
and Distribution Static Synchronous Compensators (D-
STATCOMs), and their capabilities are bounded by the device
per phase power rating [qϕ

i
, q̄ϕi ]. The feasibility set for these

devices is defined as:

Qi := {qi| qϕi ≤ qϕi ≤ q̄ϕi }. (2)

(ii) Devices that inject both real and reactive power: Here,
devices are capable of injecting both real and reactive power
into the grid. Their reactive power injection is further con-
strained by the per phase apparent power rating s̄ϕi , and other
algorithms control active power injection po,ϕi . Storages also
fall under this category. While both active and reactive power
could contribute to voltage control [1], [3], [19], this work is
limited to reactive power only. The associated feasibility set
is given by:

Qi := {qi| qϕi ≤ qϕi ≤ q̄ϕi , (p
o,ϕ
i )2+(qϕi )

2≤(s̄ϕi )
2}. (3)

Next, we present key definitions required for the formal
analysis of the proposed algorithms designed to solve the OVC
problem..

Definition 1. (Convexity). A continuously differentiable func-
tion h : C → R defined on a convex set C is called convex
if, for any x, y ∈ C and θ ∈ [0, 1], the following inequality
holds:

h(θx+ (1− θ)y) ≤ θh(x) + (1− θ)h(y).

Definition 2. (Lipschitz Continuity). A function h : Rn → R
is said to be Lipschitz continuous on a set C ⊆ Rn if there
exists a constant L ≥ 0 such that, for allx, y ∈ C:

|h(x)− h(y)| ≤ L∥x− y∥,
where ∥x − y∥ is a norm (typically the Euclidean norm)

that measures the distance between x and y.

Definition 3. (Proper). A function h : Rn → R ∪ {+∞} is
called proper if it satisfies the following conditions:

1) h(x) < +∞ for at least one x ∈ Rn.
2) h(x) > −∞ for all x ∈ Rn.

Definition 4. (Closed). A function h : Rn → R ∪ {+∞} is
said to be closed if its epigraph is a closed set. The epigraph
of h is defined as:

epi(h) = {(x, α) ∈ Rn × R | h(x) ≤ α}.

Assumption 1. [27, Theorem 8.7]
1) The function h : Rn → (−∞,∞] is convex, closed, and

proper.
2) The set C ⊆ Rn is convex, closed, and nonempty.
3) The set C is contained within the interior of the domain

of h, i.e., C ⊆ int(dom(h)).
4) The optimal solution set of min{h(x) : x ∈ C} is

nonempty and denoted by X∗, with the optimal value
represented as hopt.

Now, we refer back to the OVC problem in (1). Note that the
functional form v(q) := (vj,ϕ(q))∀j∈M,∀ϕ captures how reac-
tive power injections influence system-wide voltages without
implicitly solving the non-linear and non-convex power flow
equations. These voltages can be directly monitored from the
power distribution network as feedback. The incorporation of
this functional form also helps us capture the impacts of all
uncontrollable loads and renewable generations [28], including
discrete voltage control devices, such as on-load tap changing
(OLTCs) devices, or static voltage regulators (SVRs).

To solve the OVC problem (1), we first introduce the
Projected Gradient Descent (PGD) algorithm [28], which
under Assumption 1 converges to the global optima [29]:

qi(t+ 1) = PQi

[
qi(t)− k

∂h(q)

∂qi

]
, i ∈ C, (4)

where k is the stepsize and each component in ∂h(q)
∂qi

is

∂h(q)

∂qϕi
:=2c

∑
∀j∈M

∑
∀ϕ′

(vj,ϕ′(q)−vspj )
∂vj,ϕ′(q)

∂qϕi
+ 2diq

ϕ
i . (5)

PGD iteratively updates qi(t+1) while ensuring feasibility
as in (1b) via the projection PQi(·) operator, converging to an
optimal solution. If we refer to the first component of OVC
problem in (1), the necessary gradient ∂h(q)

∂qϕi
at each discrete

time step t in (4) is not available. For the second component,
as shown in (5), the gradient could be calculated based on
local information. We utilize ZO methods for estimating the
gradient as a part of model-free controller implementation.

Remark 1. Although the model in (1) uses a quadratic
function to regulate the voltages at specific buses in the power
distribution system, it is also possible to use other convex
functions for this purpose. Similarly, constraints can extend
beyond voltage to regulate parameters like power flow through
network branches.
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In (4), the projection operator is defined as a mapping
PC : Rn → C that assigns each point x ∈ Rn to its nearest
point in a given nonempty, closed, and convex set C ⊆ Rn.
Specifically, the projection of x onto C, denoted as PC(x), is
given by:

PC(x) := argmin
y∈C

∥y − x∥2. (6)

Next, we define the following property of the projection
operators, which will be useful for later analysis.

Theorem 1. [27, Theorem 6.42] Let C ⊆ Rn be a nonempty,
closed, and convex set. For any x, y ∈ Rn, the projection
operator PC satisfies:

1) (Firm Nonexpansivity) ⟨x − y,PC(x) − PC(y)⟩ ≥
∥PC(x)− PC(y)∥2.

2) (Nonexpansivity) ∥PC(x)− PC(y)∥ ≤ ∥x− y∥.

We also formally state the following assumption as a part
of the problem statement:

Assumption 2. Underlying input-output map vj,ϕ(q) and its
derivatives of any order are unavailable, and only the values
of vj,ϕ(q), j ∈ M, can be accessed by observing the system
outputs. Additionally, both objective function h(x) and the
feasible set Q are known.

B. Utilizing Zeroth Order methods for OVC

Classical single-point zeroth order (ZO) gradient estimator
g(xk) has the form:

g(xk) :=
n

δ
h(xk + δuk)uk. (7)

Here, δ represents the smoothing radius. Typically, uk is an
independent and identically distributed (i.i.d.) random variable
at kth iteration, which can be sampled either from a unit
sphere [30] or from a standard normal distribution [31] in Rn.
However, when sampled from the unit sphere, the components
of uk are correlated, making it challenging to implement
a controller that operates without requiring communication
among components. Conversely, when sampled from a normal
distribution, the components of uk are independent. However,
this may lead to unbounded exploration, which becomes
problematic if the function is defined only on a compact
domain.

An alternative approach to generating independent random
variables is to use sinusoidal signals, where signals of different
frequencies are employed to construct the components of uk.
Injection of perturbation signal in the form of a sinusoid [32] is
widely used in extremum-seeking (ES) control methods, which
can be viewed as the continuous-time counterpart of discrete-
time ZO optimization algorithms. The relationship between
ES methods and ZO algorithms will be further elaborated in
the next subsection. For ES control involving multi-variable
(multi-input-multi-output) systems, it is crucial to assign a
distinct frequency parameter, denoted as ω := (ωi)i∈C , to
each control input. These frequency parameters must satisfy
the following conditions for any distinct indices i, j, k ∈ C:
ωi ̸= ωj and ωi + ωj ̸= ωk [6]. This ensures that the probing
signals do not interfere with each other.

When sinusoidal signals of similar magnitudes and phases
are used, a potential issue arises if any two signals are integer
multiples of each other, as they form Lissajous figures. Lis-
sajous figures tend to exhibit non-ergodic behavior, repeatedly
tracing the same patterns, and thus do not resemble random
variables. In contrast, if the frequencies are irrational multiples
of each other, the resulting signals may seem to cover a unit
hypercube over a large number of iterations.

(a) Frequencies are integer multi-
ple.

(b) Frequencies are not integer
multiple.

Fig. 1: Example characteristics of random numbers generated
through sinusoidal functions of different frequencies.

First, we introduce the following two definitions.

Definition 5. (Hypercube and Surface of a Hypercube). Define
the hypercube centered at the origin with side length 2δ:

Hδ =

{
v ∈ Rn

∣∣∣∣ |vi| ≤ δ for i = 1, 2, . . . , n

}
.

Also, Sδ denote the surface of Hδ , consisting of 2n number
of (n− 1)-dimensional faces, defined as:

Sδ =

{
v ∈ Rn

∣∣∣∣ ∃i ∈ {1, 2, · · · , n} such that |vi| = δ,

and |vj | ≤ δ ∀ j ̸= i

}
.

We have the following two lemmas:

Lemma 1. As n → ∞, the probability that the random vector
u = [u1, u2, · · · , uj , · · · , un], where each coordinate uj is
independently sampled from the arcsine distribution, lies on
the Sδ approaches 1.

Proof. Please see Appendix A for details.

Lemma 2. As n → ∞, the probability that the random vector
u = [u1, u2, · · · , uj , · · · , un], where each coordinates uj is
independently sampled from the arcsine distribution, lie near
all 2d facets (surfaces) of Sδ with equal probability.

Proof. Please see Appendix B for details.

Arcsine distribution in the previous two lemmas originate
from the use od sinusoidal perturbation signal. For the practical
distributed implementation of ZO-control, our first objective
will be to investigate whether the gradient estimator in (7) can
accurately estimate the gradient when the random variables
are constrained to the surface of a hypercube. Additionally, we
aim to analyze the variance of the resulting gradient estimate
under the said condition.
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Definition 6. (Gaussian Smoothed function over the surface of
Hδ). Let us define the smoothed function hδ(x) as the average
of h over Hδ:

hδ(x) =
1

(2δ)n

∫
Hδ

h(x+ v) dv = Ev∈Hδ
[h(x+ v)].

Next, we propose the following lemma:

Lemma 3. Let h : Rn → R be a differentiable function, and
let δ > 0. The expected value of h(x + δu)u, where u is
sampled equiprobably from all facets of Sδ , is related to the
gradient of hδ:

Eu∈Sδ [h(x+ δu)u] =
δ

n
∇hδ(x). (8)

Proof. The proof is inspired by [30, Lemma 2.1]. Please see
Appendix C for details.

Lemma 4. If a vector u is equiprobably sampled from all
facets of Sδ and within a facet, all other coordinates are
independently sampled from the arcsine distribution, then the
expected value of the squared norm of u is given by:

Eu∈Sδ
[
∥u∥2

]
=

n+ 1

2
δ2. (9)

Proof. Please see Appendix D for details.

To analyze the convergence of the PGD under g(xk) in (7),
we first present the following Lemma for the bound of the
second moment of the gradient estimator.

Lemma 5. We have ES1
[
∥g(xk)∥2

]
≤ n2(n+1)

1δ2 (hmax
C )

2 under
the PGD update rule; for all xk ∈ Rn.

Proof. Suppose hmax
C is the maximum value of the function

h(x) within region C. Note that,

∥g(xk)∥2 = ∥n
δ
h(xk+δuk)uk∥2

xk+δuk∈C
≤ n2

δ2
(hmax

C )
2 ∥uk∥2.

Since ∥g(xk)∥2 ≥ 0, and ∥g(xk)∥2≤n2

δ2 (hmax
C )

2 ∥uk∥2
almost surely, we can take expectation on both sides,

ES1
[
∥g(xk)∥2

]
≤ n2

δ2
(hmax

C )
2 ES1

[
∥uk∥2

]
.

Since uk is uniformly sampled from the surface of a unit
hypercube, we get the desired bound on the expected value
utilizing Lemma 4.

Theorem 2. [27, Theorem 8.35] Suppose that Assumption
1 holds. Also, let, g(xk) be an unbiased estimate of ∇hδ(x),
and ES1

[
∥g(xk)∥2

]
is bounded. Let {xk}k≥0 be the sequence

generated by the stochastic projected subgradient method with
positive stepsizes {ηk}k≥0, and let {hbest

k }k≥0 be the sequence
of best-achieved values. Then,

1) If
∑k

n=0 t2n∑k
n=0 tn

→ 0 as k → ∞, then E
[
hbest
k

]
→

hopt as k → ∞.
2) Assume that C is compact. Let B be the positive

constant representing the second moment of the unbiased
gradient, and let Θ be an upper bound on the half-
squared diameter of C in (6). If tk =

√
2Θ√

B
√
k+1

, then

for all k ≥ 2, E
[
f best
k

]
− fopt ≤ µ

√
B

√
2Θ√
k+2

, where
µ = 2(1 + log(3)).

Remark 2. All the assumptions for Theorem 2 are satisfied,
where the gradient is estimated using a zeroth-order (ZO)
approach on the surface of an n-dimensional hypercube. As a
result, a stochastic projected gradient descent algorithm will
generally converge. However, the convergence rate is limited
to an order of n

3
2 . As discussed in Section III-C, this implies

that larger systems tend to exhibit slower convergence rates.
The variance of the gradient estimate is bounded in inverse
proportion to the perturbation signal. Also, The variance
estimate is bounded in squared proportion to the maximum
function value within the feasible region.

The SZO-PGD algorithm is formally provided below, which
presents the implementation of a model-free ZO algorithm for
the OVC problem. Note that the distribution network behaves
like a multi-port system, which allows for straightforward
implementation of zeroth-order (ZO) control. This also means
that the controlling phase of each node of the system requires
a unique probing signal dictated by the frequency parameter,
ωϕ
i .

Algorithm 1 SZO-PGD-Based Model-Free Optimal Voltage
Control (OVC) Algorithm.
At each time step t, do the following steps:
• Each monitored node j ∈ M measures local voltage
magnitude (vmeas

j,ϕ (t))∀ϕ and sends it to all controllable nodes.
• Each controllable node i ∈ C calculates:

h̃i
t = c

∑
j∈M

∑
ϕ

(vmeas
j,ϕ (t)− vspj )2, (10a)

qi(t+1) = PQi

[
qi(t)− k

(n
δ
h̃i
t sin(ωit)+2diqi(t)

)]
, (10b)

then deploy the reactive power injection q̂i(t+ 1):

q̂i(t+ 1) = qi(t+ 1) + δ sin(ωi(t+ 1)), (11)

where ωi := (ωϕ
i )∀ϕ and sin(ωit) := (sin(ωϕ

i t))∀ϕ.

Recall that the OVC objective function in (1) consists
of two components, where, as highlighted in (5), gradient
estimates are required only for the first component. Therefore,
in (10a), we isolate the first component using the captured
measurements, while the term 2

δh
i
t sin(ωit) represents its

gradient estimate. For the second component, the variable
diqi(t), which is locally known, is used to directly compute the
corresponding gradient. The local knowledge of the feasibility
set Qi further allows for the reactive power injection updates
as part of the PGD algorithm, as shown in (10b). Additionally,
we assume voltage measurements are noise-free, although
this may not hold in practical applications. The impact of
noisy measurements on algorithm performance is analyzed in
Section III-C.

C. Zeroth-Order Control with High- and Low-Pass Filters
Extremum-seeking (ES) control can be viewed as the

continuous-time equivalent of solving optimization problems
using the gradient descent method. The similarity between
ES control and ZO methods is illustrated in Fig. 2. In both
approaches, the goal is to solve an optimization problem of
the form minx h(x), where the objective function h(x) is
unknown, and only its output, y = h(x), can be observed.
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Fig. 2: Relationship between zeroth order optimization and
classic extremum seeking control algorithms. Signals corre-
sponding to ZO methods are marked in blue.

As shown in the block diagram, a small dither or probing
signal δd(t) is added to the state x (δ > 0 is the amplitude of
the probing signal), and another signal 2

δd(t) is multiplied to
the function evaluation. y = h(x) represents the plant, while 1

s
and −k are the integrator and gain, respectively. Considering
sinusoidal probing signals d(t) := sin(ωt) with the frequency
parameter ω, the dynamics of the closed-loop system in Fig.
2 is formulated as:

ẋ = −k · 2
δ
h (x+ δd(t)) d(t). (12)

Using the Taylor expansion and the averaging theory, the
average system dynamics is derived as:

ẋ = − k

T

∫ T

0

2

δ
h (x+ δ sin(ωt)) sin(ωt)dt

=− k

T

∫ T

0

2 sin2(ωt)h′(x)+O(δ)dt =−kh′(x) +O(δ).

(13)

Comparing (13) and Fig. 2 we see that the average dynamics
of ẋ is indeed gradient estimator g(xk), and, in the steady
state, x reaches the optimal solution x∗. See [4] for a detailed
analysis of the extremum-seeking system.

Recall that in the SZO-PGD method, the use of a single-
point gradient estimate can lead to large oscillations in the
independent variables, resulting in slower convergence. To
address this, we take inspiration from the high-pass and low-
pass filters used in the ES control method, as discussed
previously, to enhance the convergence behavior of SZO
methods. In ES control, the plant output h(x + δ sin(ωt))
can be approximated using a Taylor series expansion as
h(x) + h′(x) sin(ωt). By applying a high-pass filter to the
plant output, we can effectively eliminate the DC component,
isolating the oscillatory term h′(x) sin(ωt). When this filtered
output is then multiplied by the probing signal sin(ωt), the
resulting expression is h′(x) sin2(ωt), which simplifies to
h′(x) − h′(x) cos(2ωt). Over multiple iterations, the oscil-
latory component h′(x) cos(2ωt) averages out, leaving only
the gradient information h′(x). To further suppress these
oscillations, we pass the signal ẋ through a low-pass filter,
which helps reduce the high-frequency components, allowing
for a smoother convergence.

Again, recall the two-point implementations of zeroth-order
(ZO) methods, where one such implementation relies on an
oracle that provides both h(x + δu) and h(x). However, this
approach is not practical in many real-world scenarios because

of inherent measurement noises. One possible alternative is
to utize past measurements from the system {· · · , hi(q(k) +
δ sin(ω(k))), hi(q(k+1)+δ sin(ω(k+1))), · · · }, which may
already be available to a controlling node. Using this sequence,
we define γi

t = hi
t − hi

t−1 for gradient estimation. From the
theory of discrete time control, it is well-known that first-
order differencing acts as a high-pass filter that removes the
DC component present in the plant output. The use of first-
order differencing within ZO methods has been previously
introduced in the literature and is referred to as ‘residual
feedback’ [31]. Zhang et al. [31] have also demonstrated that
when random perturbations are sampled from a unit sphere, the
expected value of the single-point residual feedback scheme
provides a gradient estimate of the Gaussian-smoothed version
of the true objective function, while ensuring that the second
moment remains bounded.

Now, we define the gradient estimation as follows:

g̃(xk) :=
n

δ
(h(xk + duk)− h(xk−1 + duk−1))uk. (14)

Lemma 6. Let h : Rn → R be a differentiable function, and
let δ > 0. The expected value of (h(xk + δuk) − h(xk−1 +
δuk−1))uk, where both uk and uk−1 are independently sam-
pled uniformly from S1 at kth step, is related to the gradient
of hδ:

Eu∈S1 [(h(xk + δuk)− h(xk−1 + δuk−1))uk] =
δ

n
∇hδ(xk).

Proof. This proof is relatively straightforward because uk−1

and uk are independently sampled, and its expected value
has a zero mean, implying Eu∈S1 [h(xk−1 + δuk−1)uk] = 0.
Utilizing Lemma 3 then completes the proof.

We need the following lemma before we discuss the vari-
ance of the expected gradient:

Lemma 7. Let u ∈ Rn be a random vector uniformly sampled
from Sδ . Then, the expectation of the fourth power of the norm
of u, E[∥u∥4], is given by:

ESδ [∥u∥4] =
2n2 + 5n+ 1

8
δ4.

Proof. Please see Appendix E for details.

Lemma 8. Under the assumption of L-Lipschutz continuity of
h and the PGD update rule with stepsize ηk; for all xk ∈ Rn,
we have:

ES1
[
∥g̃(xk)∥2

]
≤ (n+ 1)L2

0

δ2
η2k−1E[∥g̃(xk−1)∥2]

+
L2

2

(
4n2 + 9n+ 3

)
.

Proof. Please see Appendix F for details.

Next, in regards to filtering, recursive difference equation
x(t+1) = x(t)+α (x(t)− x(t− 1)) effectively behaves as a
low pass filter, where for small α values, the filter has a lower
cutoff frequency, implying only very low-frequency signals
pass through, and with large α values, the filter has a higher
cutoff frequency. Note that in an optimization setting, this
recursive term is similar to “momentum” terms [33] especially
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heavy-ball method, which can accelerate the convergence of
an optimization algorithm [21].

Remark 3. While Lemma 8 shows that the variance of the
gradient estimate g̃ is bounded, which is an essential condition
for the convergence of the PGD algorithm (see Theorem 2),
without additional restrictions on h, it is difficult to analyti-
cally compare the convergence rate with the incorporation of
residual feedback term. Analyzing convergence gets further
complex with the incorporation of momentum terms in the
PGD technique. Here, we will solely rely on numerical simu-
lation to compare algorithm performance, and the theoretical
convergence guarantee of ZO PGD with momentum term will
be a part of future work.

Both of these differencing and momentum terms as high-
and low-pass filters are suitably incorporated in the SZO-
PGD-based model, and the overall algorithm is presented in
Algorithm 2.

Algorithm 2 HLF-SZO-PGD-Based Model-Free Optimal
Voltage Control (OVC) Algorithm.
At each time step t, do the following steps:
• Each monitored node j ∈ M measures local voltage
magnitude (vmeas

j,ϕ (t))∀ϕ and sends it to all controllable nodes.
• Each controllable node i ∈ C calculates:

Equation(10a), γi
t = h̃i

t − h̃i
t−1, (15a)

qi(t+ 1) = PQi

[
qi(t)− k

(n
δ
γi
t sin(ωit) + 2diqi(t)

)
+ α

(
qi(t)− qi(t− 1)

)]
, (15b)

then deploy the reactive power injection q̂i(t+ 1) (11).

Compared with Algorithm 1, Algorithm 2 replaces the
reactive power update rule (10b) with (15). Equation (15a)
results from the integration of a high-pass filter, where γi

t is
the residual difference between the function evaluation hi

t at
time t and the function evaluation hi

t−1 one time step earlier.
In (15b), an additional momentum term α

(
qi(t)− qi(t− 1)

)
is added, where α ∈ [0, 1] is an tunable parameter.

Remark 4. In contrast to the HLF-SZO method in [21], our
proposed HLF-SZO-PGD method (Algorithm 2) significantly
extends its capabilities, making it suitable for constrained
optimization problems, and easy to deploy in realistic envi-
ronments by utilizing sinusoids as random number generators.
Moreover, compared to [3], this paper offers three key ad-
vantages: 1) We utilize both high-pass and low-pass filters
for improved performance, while [3] uses only a low-pass
filter; 2) Our method is iterative, making it more practical
than the continuous-time dynamics used in [3]; and 3) We
extend the voltage control application to more realistic three-
phase unbalanced distribution systems with comprehensive
testing.

D. Practical Implementation
The implementation of both the SZO-PGD and HLF-SZO-

PGD algorithms, as outlined above, is depicted in Fig. 3.
The controllable device comprises an energy source, power
electronic switches, measurement units for determining control

references, and a pulse width modulation (PWM) generator to
drive the converters. These controllable devices are linked to
the grid via the point of common coupling (PCC). The inverter
control receives both active and reactive power setpoints,
denoted as Pset and Qset, respectively. In our implementation,
Qset is regulated by the ZO controller. Since Algorithm 2 oper-
ates in discrete time steps, Qset, represented as q̂i(t), remains
constant between consecutive time intervals. This behavior is
reflected in the staircase function depicted in the diagram. The
assumption is that the system’s operating conditions do not
change within each time step. As a result, the probing signal
used for Qset takes the form of a discrete-time sinusoidal
signal, where t represents the integer time-step. As shown in
both the diagram and Algorithm 2, the controller relies solely
on the broadcasted unidirectional voltage magnitudes across
the system, significantly reducing communication overhead.

PCC

Qset
ZO

Control Communicate voltages 

at monitored nodes

Reactive power is set periodically

PWM Inverter
Control

M

Controllable devices operating 

in continuous operable space

Time step matched

Pset

Power Distribution 

System

Fig. 3: Discrete time control action.

Furthermore, at the time of integration, the controllers
require various input parameters, including system model
parameters such as c and d, specified voltages vspj , and
algorithm-specific parameters like δ, k, and α. Additionally,
the controllers must negotiate values for ωϕ

i during the con-
nection process and update the value of n with the addition
or removal of controllers.

In both algorithms, the complexity per controller node
exhibits similar asymptotic characteristics. Each controller
node receives voltage measurements from all monitored nodes
(|M|) across multiple phases (|ϕ|), resulting in comparable
time, memory, and computational requirements. For the SZO-
PGD algorithm, each controller node computes a cost function
by aggregating voltage deviations across all monitored nodes
and updates the reactive power using zeroth-order gradient
descent. This process results in a time and computational
complexity of O(|M| × |ϕ|) per controller, driven mainly
by the cost function evaluation. The memory complexity is
also O(|M| × |ϕ|), as each controller stores the voltage
measurements and corresponding reactive power values. The
HLF-SZO-PGD algorithm adds the computation of the residual
difference between consecutive cost values and incorporates
a momentum term. While these additions introduce a few
extra arithmetic operations, the overall time and computational
complexities remain similar. Likewise, the memory complexity
is unchanged since the controller now stores the cost function
values from the previous iteration in addition to the existing
data.

Based on the scope and control implementation, a taxonomy
of the above SZO control algorithms is presented in Fig.
4, which summarizes the key features of these algorithms
[1]. In particular, the proposed HLF-SZO-PGD algorithm is
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SZO-PGD/
HLF-SZO-PGD

DynamicFrequent

Application 
Type

Decision-Making

Volt-Var
ControlModel-Free

System 
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Implementa-
tion
Type

Broadcasting
Measurements
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et
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d

Communica-
tion

Iterative 
Data

Exchange

Algorithm
Type

Power Domain Cyber Domain

Fig. 4: Taxonomy of the SZO-PGD/HLF-SZO-PGD algo-
rithm.

fully model-free. The algorithm also enables plug-and-play
operation and does not require a control center to coordinate
a large number of distributed energy devices. This taxonomy
helps us characterize the suitability of deployment of this
algorithm in the real world.

OLTCs

SVRs

ES Controller

Monitoring

Solar PV

p1udt112 -p1udt20754x → 100 

p1udt21176 105

p1udt22005 104

p1udt7267 → 101 

p1udt15202 103

p1udt22135lv → 106

→

→
→

Fig. 5: The test feeder from the synthetic Austin Grid.
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Fig. 6: The solar and load profiles in a typical day.

III. CASE STUDY

To understand the scalability of our algorithms, we evalu-
ated and compared the performance of the proposed algorithms
using two different systems: (1) the IEEE 13-bus system
and (2) a realistic 3-phase unbalanced test feeder comprising
of 127 nodes modeled after an actual distribution network
located in Austin, Texas. This test feeder is a part of the
large T&D simulation model developed in [34] utilizing only
publicly available data with parameters tuned based on his-
torical dataset. Note that the load profiles used to tune the
network model may be generic, which limits the accuracy of
the synthetic feeder with the actual power grid. The feeder’s
topology is shown in Fig. 5, where we have highlighted
specific nodes used in the controller performance analysis. To
enhance the readability of the figures, we have renamed these
nodes.

There were a few challenges when using the synthetic
test feeder to evaluate our algorithm’s accuracy. First, the
distribution feeder did not specify which nodes had solar
PV installations. To overcome this, we randomly selected a
few nodes as potential locations for solar PVs. The nodes
interfacing with the solar PV installations and their respective
controllers are illustrated in Fig. 5. The PV generation profiles
used for testing were derived from real-world data provided by
Pecan Street [35], representative of the Austin, Texas region.
Second, the initial load profiles were generic and lacked
specificity. To address this, we incorporated realistic load
profiles sampled from Pecan Street’s dataset [35], ensuring the
loading conditions reflected real-world scenarios. In particular,
we selected profiles that demonstrate the controller’s perfor-
mance under stressed operating conditions. Please note that,
as shown in Fig. 6, the inclusion of sudden spikes in load and
generation profiles in time-varying scenarios aids in evaluating
the controller’s robustness. Finally, we enhanced the synthetic
feeder by adding a substation with a 12.47 kV/7.20 kV, 7 MVA
transformer equipped with on-load tap changers (OLTCs) to
evaluate our algorithm’s performance in the presence of other
devices not directly controlled by it. We also integrated a static
voltage regulator (SVR), as shown in Fig. 5, in this regard. We
assumed that the pre-calculated setpoints for OLTCs and SVRs
were already in place.

Other than these, as shown in Fig. 5, we have included a
few nodes containing energy storages, where active power set-
points are predefined. The set of monitored nodes where the
voltages are to be maintained around set points is also high-
lighted. We employed OpenDSS [26] as the system simulator,
accurately capturing the full nonlinear, non-convex power flow
equations. We assumed that the pre-calculated setpoints for
OLTCs and SVRs were already in place. Here, we assume
that our power system simulation process is quasi-static, where
we run power flow simulations considering datasets 2 seconds
apart. We also assume that within this time interval, the
voltages are measured at the monitoring nodes, broadcasted,
and received by the controller nodes. Controller complexity
was provided earlier, which demonstrates that low-cost com-
puting devices could be utilized in field deployment. Given
the reliance on broadcasting from monitoring nodes, chal-
lenges such as data packet corruption, missing measurements,
noisy voltage data, and potential cyber-attacks are significant
concerns. In particular, we focus on denial-of-service (DoS)
attacks as a key cyber threat.

A. Implementation and Results
For simulation purposes, we have strategically selected

probing signal frequencies based on prime numbers, and the
exact calculation methodology could be easily accessed from
the shared repository2. We define this set of frequencies as ω
(with units rad/s). In the experiments to analyze the conver-
gence of the algorithms, we considered a fixed PV injection
of 0 pu and a system-wide load of 3 pu to understand the
convergence characteristics of the controllers. The simulation
results are shown in Fig. 7. Notably, both controllers ensured
that the steady-state voltage profile remained within acceptable
bounds (see Figs. 7(a.2-3) and 7(b.2-3)).

2Not shared yet to preserve anonymity.
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Fig. 7: Algorithm performance under constant load for both IEEE 13-node (a.1-a.3) and synthetic Austin grid (b.1-b.3).

We make two observations here. First, with both SZO-
PGD and HLF-SZO-PGD, as the problem size grew, the
convergence time grew from 900 iterations in IEEE 13-bus
system to 1800 iterations for 127 node austin grid test system
(it is not the system size that increases the convergence time,
rather it is number of controllers n in (7)). Second, given
the voltage measurements with algorithm SZO-PGD shown in
Figs. 7(a.2) and 7(b.2), it can be seen that the introduction
of filters into the SZO-HLF-PGD algorithm notably attenu-
ated high-frequency perturbations in voltage measurements.
Additionally, due to low variance in the gradient estimate
in the filter-based technique, one could choose a higher step
size, which can lead to rapid convergence of the algorithm,
as demonstrated in Figs. 7(a.1) and 7(b.1). For example, for
the IEEE 13-node case, with filters, δ = 0.1 and ω, one
could increase step-size from 0.42 × 10−6 to 0.90 × 10−6

with α = 0.9 to reduce the convergence time from 900
iterations to ∼ 450 iterations. For the Austin grid case, with

filters, δ = 0.03 and ω, the step-size could be increased from
0.3 × 10−7 to 10−7 with α = 0.6 to reduce the convergence
time to 1800 iterations (for voltages). While the number of
iterations reported here is attributed to the cold start operation,
in practical deployment with the ZO controller continuously
operating, the algorithm would converge much faster. Note that
in all cases the objective function asymptotically converges to
the true optima.

Given the iterative nature of the algorithms, there can be
multiple of these hyperparameters (δ, k, α, and ω) that dictate
the convergence. In the next subsection, we will analyze the
same while limiting our focus to the Austin grid case. Note
that these hyperparameters could be made adaptive to improve
the convergence speed.

B. Parametric Analysis of SZO-HLF-PGD algorithm
1) Impact of Probing signal Amplitude (δ) and step size

(k) on Convergence: Examining Lemma 6 and 8, we ob-
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Fig. 8: Parametric analysis of SZO-HLF-PGD algorithm considering synthetic Austin grid with constant load demand.
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serve that a higher value of δ generally results in a more
accurate gradient estimate with lower variance. Consequently,
as shown in Fig. 8(a), a higher δ enables the use of a
larger k, leading to faster convergence without causing system
instability. However, it is important to note that xk + δuk

is injected into the system, which implies that increasing δ
will inherently produce a larger perturbation in the function
evaluation. Despite this, Fig. 7(b.2) reveals the emergence of
spikes or knots in the objective function after a certain number
of iterations, indicating that additional analysis is required to
understand their origin. Thus, δ and k cannot be set too high
for practical implementation. All experiments were conducted
with α = 0.6 and ω.

2) Impact of Filters: High-pass filters are embedded into
the algorithm through (15a) and, as a result, cannot be di-
rectly controlled. Impacts of low-pass filters are illustrated
in Fig. 8(c), where the sensitivity analysis indicates that the
algorithm converges faster with increasing values of α (where
α ∈ [0, 1]). Although the exact relationship between α and
the convergence rate of the algorithm is not yet established
(and will be addressed in future work), it is anticipated that
excessively high values of α could cause the control algorithm
to diverge. This behavior may arise because momentum terms
tend to accumulate over iterations. The experiments presented
were conducted using δ = 0.03, k = 1.0× 10−7, and ω.

3) Impact of Probing Signal Frequency (ω) on Conver-
gence: Here, the probing signals are a part of random number
generation; therefore, their impacts are largely absent in the
gradient and its variance estimation. However, we can rely
on ES control literature to understand the impacts of ω on
model convergence. First, intuitively speaking, large ω covers
Sδ faster, and therefore, probing sinewave will mimic random
numbers at a quicker rate. Second, drawing inspiration from
ES theory, typically, larger ω would lead to better time-
scale separation property [36], leading to faster convergence.
However, its impact could be limited by the choice of low-
pass filters. In this regard, we have tested the algorithm against
α = 0.6 with three sets of probing signals, ω, 1.05ω, and
1.10ω and the results are provided in Fig. 8(b). We have

also performed experiments with 1
1.05ω, ω, and 1.05ω with

α = 0.1. In both cases, we have chosen δ = 0.03, and
k = 1× 10−7 (see Fig. 8(d)).

With the lower value of α, the convergence of the algorithm
gets enhanced with increasing probing signal frequency; how-
ever, with higher α, convergence deteriorates with increasing
probing signal frequency. Selected probing signal frequencies
do not exert a discernible influence on the optimal solutions
and could be a future research direction.

C. Algorithmic Robustness

1) Considering Cyber-Anomalies: Here, we systematically
assess the performance of the SZO-HLF-PGD algorithm un-
der the distinct test conditions within the synthetic Austin
grid while considering consistent probing signals and hyper-
parameter settings (δ = 0.03, ω, α = 0.6, k = 1×10−7). Here,
we examined the algorithm convergence considering (a) noisy
measurements, (b) delayed measurements, and (c) unavailable
data. In scenarios where data are unavailable, the controller is
assumed to rely on a default measurement value of 1 pu. The
simulation results are illustrated in Fig. 9. We have visualized
only the phase-a voltages for brevity.

For the noisy measurement test case, we introduce measure-
ment noise levels of 1%, 5%, and 7% across all available mea-
surements. Trajectories of objective functions (see Fig. 9(a.1))
and the voltages in the presence of varying measurement noise
(see Fig. 9(a.2)) reveal that increasing measurement noise
levels appear to exert no discernible impact on convergence.
This robustness could be attributed to the filters incorporated as
part of the SZO-HLF-PGD algorithm. Zhang et al. have shown
in [31, Lemma 12] that in the Zero-Order (ZO) optimization
with residual feedback, where random numbers are sampled
from the unit sphere and the function estimation noise is
bounded, the squared moment of the ZO estimator is upper-
bounded as a function of the noise. A similar property could be
applicable to our problem and warrants further investigation.
It could also be expected that the controller may diverge with
large measurement noises.
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Fig. 9: Robustness of HLF-SZO-PGD algorithm with constant load under different scenarios: (a) noise, (b) delay in
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In the delayed measurements scenario, we introduce a fixed
3-sample delay in voltage measurements across all phases
from a designated node. We examine three distinct cases:
(i) measurement delay from node ‘105,’ (ii) measurement
delay from node ‘104,’ and (iii) simultaneous measurement
delay from both nodes ‘105’ and ‘104.’ As shown in Fig.
9(b.1), delays in different nodes manifest varying effects on
convergence. All the phase voltages can be equally affected
but not shown for brevity.

Concerning the replacement of unavailable measurements
with pseudo-measurements of 1 pu, we conduct three exper-
iments: (i) unavailability of measurements from node ‘105,’
(ii) unavailability of measurements from node ‘104,’ and (iii)
unavailability of measurements from both nodes ‘105’ and
‘104.’ Comparative analysis between Figs. 9(b.1) and 9(c.1)
suggest that the absence of measurements from multiple nodes
appears to have a comparatively lesser impact. This could
be because the unavailability of a measurement from a node
implies the absence of a corresponding control objective in
(1). This is also the reason the controllers reach a new
operating point with a better control objective than that of
with all measurements available, as shown in Fig. 9(c.1).
Notably, in contemporary IP-based communication systems,
measurements may include timestamps – which could be
utilized before deploying the delayed signals with significant
improvement in a performance gain. While severe data loss can
be detrimental to the overall system performance, it does not
significantly impair the controller’s performance, especially
when the controller observes severe data loss or longer delays.

2) Time-Varying Case for Synthetic Austin Grid: Here, we
evaluate the performance of the SZO-HLF-PGD algorithm
under time-varying load and generation conditions, as depicted
in Fig. 6. The evaluation is conducted in the presence of
traditional voltage control devices, such as OLTCs and SVRs,
which operate using predefined setpoints. The impacts of
these traditional controllers are shown in Fig. 10. The OLTCs
and SVRs adjust their setpoints several times throughout
the day—specifically around 08:00, 10:00, 12:00, 15:00, and
17:00 hours—marked by vertical dotted lines. Meanwhile,
the ZO controllers operate independently using local mea-
surements, with parameters set to δ = 0.03, ω, α = 0.6,
k = 1 × 10−7. Notably, despite having no communication
among the controllers, the ZO controllers are able to respond
to exogenous sharp voltage change induced by the traditional
controllers while limiting the voltages within reliability limits.
Although detailed results are omitted for brevity, our analysis
indicates that the introduction of additional control actions
significantly reduces reactive power demand from the ZO
controllers. This suggests that optimizing the setpoints of tradi-
tional controllers is crucial for minimizing the reactive power
output of the ZO controllers, thereby enhancing overall voltage
regulation. Instead of simultaneous control of multiple tap
positions, tap operations could be coordinated considering the
presence of ZO voltage controller dynamics for an even better
voltage profile. Developing such a hybrid control methodology
represents a promising direction for future research.

IV. CONCLUSION

This paper overcomes practical challenges in deploying
zeroth-order (ZO) methods for real-world voltage control

Fig. 10: Voltage profile with time-varying load profile in syn-
thetic Austin grid feeder with OLTCs, SVRs, with diverse PVs,
numerous controllers, and monitoring nodes to demonstrate
HLF-SZO-PGD controller algorithm scalability. The voltages
shown in this figure correspond to Phase A only.

by conducting extensive tests using the 3-phase unbalanced
IEEE 13-node and synthetic Austin grid feeders, along with
theoretical guarantees. In the context of ZO methods, for the
first time, we have employed sinusoidal waveforms to create
pseudo-random numbers, showing that existing zeroth-order
estimators can accurately approximate the system gradient
needed for generating control signals. Additionally, we have
utilized methods from classical optimization literature with
filtering properties to improve controller performance. For
comparison, we adopted a projected gradient descent method
and developed two algorithms, SZO-PGD and HLF-SZO-PGD.
Our results demonstrate that the HLF-SZO-PGD algorithm,
which integrates filtration, enhances gradient tracking without
compromising the end result. The mathematical guarantees
provided confirm the controller’s effectiveness in terms of
convergence, robustness, and resilience, not only in simu-
lations but also under realistic operational conditions. We
see that our approach works seamlessly alongside traditional
voltage regulators and dynamically adjusts to fluctuating grid
conditions, even without detailed system models. The in-
sights from this study lay a robust groundwork for future
enhancements of ZO methods. Future research will aim to
reduce reliance on system perturbations, incorporate advanced
predictive analytics via machine learning for proactive grid
management, and further streamline the algorithms to lower
computational requirements.

LIST OF ACRONYMS

DER Distributed Energy Resources
OLTC On-load Tap-Changer
SVR Static Voltage Regulator
ES Extremum seeking methods

HLF High/Low-pass Filter
OVC Optimal Voltage Control
PGD Projected Gradient Descent
RL Reinforcement Learning

(S)ZO (Single-point) Zeroth-Order
ICT Information and Communication Technologies
DoS Denial of Service

APPENDIX A
PROOF OF LEMMA 1

First, recognize that the arcsine distribution as given in (A.1)
describes the probability distribution of the values taken by



12

the sine function, particularly highlighting how these values
are concentrated near the endpoints.

f(x) =
1

πδ

√
1−

(
x
δ

)2 , for x ∈ [−δ, δ]. (A.1)

In our case, a random vector u ∈ Hδ where each coordinate
uj is independently sampled from the arcsine distribution.
Considering interval uj ∈ [−δ,−δ − ϵ]∪[δ − ϵ, δ], substituting
uj = δ sin θ, and with symmetry, we get:

P
(
|uj | > |δ − ϵ|

∣∣∀k ̸= j
)
=

2

π

∫ π
2

arcsin( δ−ϵ
δ )

dθ

=
2

π

(π
2
− arcsin

(
1− ϵ

δ

))
.

For small ϵ, using the approximation arcsin
(
1− ϵ

δ

)
≈ π

2 −√
2ϵ/δ, we obtain:

P
(
|uj | ≥ |δ − ϵ|

∣∣∀k ̸= j
)
≈

2
√
2ϵ/δ

π
.

Since the coordinates are independent:

P (all |uj | < |δ − ϵ|) = [P (|uj | < |δ − ϵ|)]n .

For large n, using the approximation
(
1− c√

n

)n
≈ e−c

√
n,

where c =
2
√

2ϵ/δ

π , we have:

P (all |uj | < |δ − ϵ|) ≈ e−c
√
n → 0 as n → ∞. (A.2)

Then, the probability that at least one coordinate satisfies
|uj | ≥ |δ − ϵ| is:

P

(
max

j
|uj | ≥ |δ − ϵ|

)
= 1− P (all |uj | < δ − ϵ)

≈ 1− e−c
√
n → 1 as n → ∞.

□

APPENDIX B
PROOF OF LEMMA 2

The facet F±
j of Sδ corresponding to fixing the jth coordi-

nate at δ or −δ:

F+
j =

{
v ∈ Hδ

∣∣∣∣ vj = δ

}
, F−

j =

{
v ∈ Hδ

∣∣∣∣ vj = −δ

}
,

for j = 1, 2, . . . , d. (B.1)

Consider the probability that u is near the facet F+
j , i.e.,

uj ≥ δ − ϵ:

P (F+
j (ϵ)

∣∣∀k ̸= j) = P (δ − ϵ ≤ uj ≤ δ). (16)

We took conditional probability, which summed to zero Sec-
ond, since all coordinates uj are identically and independently
distributed. Note that because of symmetry,

P (F+
j (ϵ)

∣∣∀k ̸= j) = P (F−
j (ϵ)

∣∣∀k ̸= j) ≈
√

2ϵ/δ

π
. (17)

The approximation is due to small ϵ. See Appendix A for
detailed calculation. Note that the probability is independent
of surface j. □

APPENDIX C
PROOF OF LEMMA 3

The expected value of h(x+ δu)u is given by:

Eu∈Sδ [h(x+δu)u] =
1

SurfaceArea(Sδ)

∫
Sδ
h(x+δu)u dS(u).

(A.1)
Here, SurfaceArea(Sδ) is the surface area of the hypercube.

Since the surface of Sδ consists of 2n faces, we can write the
integral as a sum over each face:

∫
Sδ
h(x+ δu)u dS(u) =

n∑
i=1

(∫
F+

i

h(x+ δu)ui dS(u)

+

∫
F−

i

h(x+ δu)ui dS(u)

)
ei,

where F+
i and F−

i represent the faces where ui = 1 and
ui = −1, respectively, and ei is the unit vector in the ith

coordinate direction. Now let u−i ∈ [−1, 1]n−1 denote the
components of u excluding ui. Define:

ϕ±
i (x) =

∫
u−i∈[−1,1]n−1

h (x+ δ (u−i,±1)) dS(u−i)

v−i=δu−i
=

∫
v−i∈[−δ,δ]n−1

h (x+ (v−i,±1δ)) dv−i.

Then, the integral over each face is given by:

Ii = ϕ+
i (x)− ϕ−

i (x). (A.2)

Next, consider the partial derivative of the smoothed func-
tion hδ(x):

hδ(x) =
1

(2δ)n

∫
Hδ

h(x+ v) dv.

Differentiating hδ(x) with respect to xi:

∂hδ(x)

∂xi
=

1

(2δ)n

∫
Hδ

∂h(x+ v)

∂xi
dv =

1

(2δ)n

∫
Hδ

∂h(x+ v)

∂vi
dv.

Applying the fundamental theorem of calculus:

∫
Hδ

∂h(x+ v)

∂vi
dv. =

∫
v−i∈[−δ,δ]n−1

∫ δ

vi=−δ

∂h(x+ v)

∂vi
dvi

=

∫
[−δ,δ]n−1

[h (x+ v−i + δei)− h (x+ v−i − δei)] dv−i..

(A.3)

From (A.2) and (A.3),

Ii = (2δ)n
∂hδ(x)

∂xi
.

The expected value over the surface from (A.1) will be:

Eu∈Sδ [h(x+ δu)ui] =
Ii

SurfaceArea(Sδ)
.

Given, the surface area of the hypercube is 2n(2δ)n−1, and
due to Lemma 2 each faces are equiprobable:



13

Eu∈Sδ [h(x+ δu)ui] =
(2δ)n ∂hδ(x)

∂xi

2n(2δ)n−1
=

δ

n

∂hδ(x)

∂xi
.

Finally, in vector form:

Eu∈Sδ [h(x+ δu)u] =
δ

n
∇hδ(x).

□

APPENDIX D
PROOF OF LEMMA 4

Choose one of the 2n facets of Sδ . The remaining n −
1 coordinates {uj}j ̸=i are independently sampled from the
arcsine distribution. Then, the squared norm of u is given by:

∥u∥2 = u2
i +

∑
j ̸=i

u2
j .

Since ui is fixed to either δ or −δ, E[u2
i ] = δ2. For the

remaining j ̸= i, uj is sampled from the arcsine distribution
bounded by [δ, δ], the expectation of u2

j considering indepen-
dence:

E[u2
j ] =

δ2

π

∫ 1

−1

y2√
1− y2

dy. (B.1)

The above integral was contained through the change of
variables. The integral

∫ 1

−1
y2√
1−y2

dy can be computed by

noting that it is equal to π
2 . Thus:

E[u2
j ] =

δ2

π
· π
2
=

δ2

2
.

Therefore, the expected value of the squared norm ∥u∥2 is

E[∥u∥2] = E[u2
i ]+

∑
j ̸=i

E[u2
j ] = δ2+(n−1) · δ

2

2
= δ2 · n+ 1

2
.

(B.2)
Since this calculation holds for any of the 2n facets, and

each coordinate contributes equally due to Lemma 2, the over-
all expected value of the squared norm can be subsequently
obtained. □

APPENDIX E
PROOF OF LEMMA 7

Assume without loss of generality that u1 = δ (due
to symmetry, the result is the same for u1 = −δ), and
the remaining coordinates u2, u3, . . . , un are independently
selected. The fourth power of the norm is:

∥u∥4 =

(
n∑

i=1

u2
i

)2

= δ4 + 2δ2
n∑

i=2

u2
i +

(
n∑

i=2

u2
i

)2

.

Taking the conditional expectation on the facet:

E[∥u∥4] = E[δ4]+2δ2E

[
n∑

i=2

u2
i

]
+E

( n∑
i=2

u2
i

)2
 . (C.1)

Each ui for i = 2, 3, . . . , n sampled from the arcsine dis-
tribution bounded by [δ, δ], and are independent. We calculate
the expectation of each term separately:
(i) E

[∑n
i=2 u

2
i

]
: We have: E[u2

i ] =
δ2

2 (see, Appendix D).
Thus:

E

[
n∑

i=2

u2
i

]
= (n− 1) · δ

2

2
=

(n− 1)δ2

2
. (C.2)

(ii) E
[(∑n

i=2 u
2
i

)2]
: Expanding the square:(

n∑
i=2

u2
i

)2

=

n∑
i=2

u4
i + 2

∑
2≤i<j≤n

u2
iu

2
j .

Note that: E[u4
i ] =

3
8δ

4,
and, E[u2

iu
2
j ] =

(
E[u2

i ]
)2

= δ2

2 . Then, summing over all
terms:

E

( n∑
i=2

u2
i

)2
 = (n− 1) · 3

8
δ4 + (n− 1)(n− 2)

δ4

4
.

(C.3)
Substituting (C.2)-(C.3) to (C.1)

E[∥u∥4] = δ4
(
1 + 2 · n− 1

2
+

3(n− 1)

8
+

(n− 1)(n− 2)

4

)
=

2n2 + 5n+ 1

8
δ4. (18)

Since this calculation holds for all the coordinates, and
each coordinate contributes equally due to the symmetry of
the hypercube, the overall expected value can be subsequently
obtained. □

APPENDIX F
PROOF OF LEMMA 8

Based on [31, Lemma 6] and given that h is a L-Lipschutz
continuous, we have

E[∥g̃(xk)∥2]

= E
[
1

δ2
(h(xk + δuk)− h(xk−1 + δuk−1))

2∥uk∥2
]

≤ 2L2
0

δ2
E[∥xk − xk−1∥2∥uk∥2] + 2L2E[∥uk − uk−1∥2∥uk∥2].

(D.1)

Since uk is independently sampled from xk−xk−1, we have
E[∥xk − xk−1∥2∥uk∥2] = E[∥xk − xk−1∥2]E[∥uk∥2]. For the
second part, we get that E[∥uk−uk−1∥2∥uk∥2] ≤ 2E[(∥uk∥2+
∥uk−1∥2)∥uk∥2] = 2E[∥uk∥4] + 2E[∥uk−1∥2∥uk∥2] =
2
(
E[∥uk∥4] + E[∥uk∥2]2

)
= 1

4

(
4n2 + 9n+ 3

)
.

Plugging these bounds into inequality (A.1), we have that

E[∥g̃(xk)∥2] ≤
2(n+ 2)L2

0

3δ2
E[∥xk − xk−1∥2]

+
L2

2

(
4n2 + 9n+ 3

)
.

Now, using the PGD update rule and the non-expansiveness
property:
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E[∥xk − xk−1∥2|xk−1]

= E[∥PC(xk−1 − ηk−1g̃(xk−1))− xk−1∥2|xk−1]
non-expansiveness

≤ ∥(xk−1 − ηk−1g̃(xk−1))− xk−1)∥2

= η2k−1E[∥g(xk−1)∥2]

Now from (D.1),

E[∥g̃(xk)∥2]

≤ (n+ 1)L2
0

δ2
η2k−1E[∥g̃(xk−1)∥2] +

L2

2

(
4n2 + 9n+ 3

)
.

(D.2)

□
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