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Abstract—The requisite cost-benefit analysis for the deploy-
ment of voltage sag mitigation solutions often requires an explicit
mathematical expression of the customers’ willingness-to-pay
estimates. The willingness-to-pay function, which is also equal
to the benefit received by customers through the prevention
of process failures, is a function of the probability density
function of sag occurrence, customer’s conditional process failure
probability, and the process interruption cost. In this paper,
through a detailed mathematical analysis, it has been shown
that the customer’s marginal willingness to pay function is
linearly decreasing. The conditional probability theory is used
for calculating the total probability, which is primarily utilized
for calculating benefits received from the prevention of process
failures. The derived linear willingness to pay function of the
customer has been utilized to obtain optimal voltage sag miti-
gation solution provision for a typical customer. The symbiotic
behavior resulting from common mitigation solution provision
for multiple customers is also presented.

Index Terms—Cost-benefit analysis, Probability theory, Voltage
sags

I. INTRODUCTION

AMONG various power quality (PQ) related concerns, the
economic impact of short interruptions induced by dis-

crete, stochastic, but frequent temporary faults in the overhead
distribution network are very high. However, unlike short inter-
ruptions, the propagation of voltage sags induced by temporary
fault events influences a large customer base. Moreover, both
short interruptions and voltage sags are inevitable as a part of
the protection devices coordination mechanism [1].

Higher frequency of voltage sags and enormous cost im-
plication on commercial and industrial loads [2] necessitate
sag performance improvement of the distribution network.
Although with the recent establishment of various PQ-related
regulations in different parts of the world, the voltage sag
occurrence frequency can be significantly reduced; one cannot
entirely eliminate its occurrence without significant economic
investment, which ultimately will be passed onto the cus-
tomers. Therefore, the cost-benefit analysis of voltage sag
mitigation devices gains significance.
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A multitude of mitigation devices, such as SVCs (static
VAR compensators), STATCOMs, etc., exist for voltage sag
improvement. Optimal allocation of these mitigation devices
for minimization of the weighted sum of the number of sags
[3], network-wide overall utility maximization [4], aggregated
performance improvement requirement [5], premium power in-
vestment strategy with disappointment-rejoicing psychological
perceptions of sensitive customers [6], providing differentiated
quality to various customers [7] have been discussed in the
literature. Furthermore, once the mitigation device is in place,
its benefit can be enjoyed by a group of customers. The cost-
benefit analysis for sag mitigation of a typical industrial plant
with specific process failure characteristics [8] is presented in
[9]. Furthermore, the correlation among incentive provision
from mitigation devices and plant sizes for various mitigation
solutions is derived in [10].

Based on the existing literature, given a voltage sag event,
the expected loss incurred with the customer’s process failures
depends on both the probability of observation of a certain
residual voltage (the minimum voltage observed during a sag
event) at the customer’s premises and the conditional failure
probability of the customer’s processes. In this regard, method-
ologies for the stochastic assessment of observed residual
voltage (such as Monte-Carlo analysis [11], [12]) are well
established, and a detailed literature survey on the risk of
process failures is also available in [13]. While one can readily
calculate the impact of sags on customers based on Monte
Carlo approaches or field measurements as discussed in the
literature, a simple mathematical expression that can help one
to carry out a primitive cost-benefit analysis for an optimal
voltage sag mitigation solution provision without looking into
the detailed plant model do not exist. In this paper, through
an approximated mathematical analysis, we aim to estimate
the customer’s willingness-to-pay function for the voltage sag
mitigation (which is also equal to the benefit received by
preventing customers’ process failures), which will supplement
detailed mathematical analysis presented in [14], [15].

Our contributions in this paper are twofold: (i) Derivation of
an analytical expression of customer’s benefit from the miti-
gation solution provision. To achieve the same, the calculation
of the probability density function (PDF) of the post-fault
residual voltage and the yearly expected number of fault events
are briefly discussed first. Subsequently, based on a simplistic
conditional process failure probability function, the expected
losses incurred with and without mitigation solution provision
for a typical customer are calculated to extract the benefit
from the solution provided. (ii) The proposed analytical benefit
function is utilized to derive the optimal voltage sag mitigation
solution provision considering DVRs and is presented through
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Fig. 1: Pictorial depiction of average number of sag events observed by various customers within an year.

a simple example.

II. CUSTOMERS WILLINGNESS-TO-PAY ESTIMATE

A. Calculating the PDF of dropped Voltage

An IEEE 98-bus radial distribution network has been con-
sidered for calculating the sagged voltage PDF. Three radial
IEEE 34-bus networks [16] are connected to the upstream
network, where buses 1 and 2 of all the three networks
are common. Here, distribution networks observe a source
impedance of 0.0096+j2.1128 Ω connected between buses 1
and 2.

It has been considered that the customers experience voltage
sags due to faults within the local network. The sags can
also originate from the upstream network. In this regard, a
fault rate of 55.92 faults/100 circuit-km/year is considered
at each of the branches for fault analysis. The line length
of one kilometer is considered to calculate the fault rate of
the branches. Additionally, a truncated normally distributed
[17] fault impedance, with the mean value and the standard
deviation of 1 Ω and 5 Ω respectively, is also accounted for
in the analysis. The state duration sampling approach [18] has
been considered to obtain the fault statistics.

The discussion on the methodology of deriving residual
voltage statistics is beyond the scope of this paper, and the
existing literature [11], [19] can be referred to in this regard.
Typical statistics of the residual voltage corresponding to the
sag events observed by typical observers at various locations
within a year occurrence frequency at nodes 2, 50, 70, and 90
(arbitrarily chosen) for the considered network are shown in
Fig. 1. Similar characteristics can also be observed in Fig.
8 of [11] or Figs. 2, 3 and 4 of [12] or Fig. 7 of [19],
which validates the observed sag statistics. As indicated in
the existing literature, while the observed peaks in the residual
voltage statistics is bound to change depending on radiality,
length, fault rate of the distribution lines, fault rate of the
upstream network, and relative location of the customer within
the network; after observing the highlighted part of Fig. 1 it
is imminent that the overall characteristics remain the same
(residual voltage tend to concentrate near 0.9 pu with a very

high frequency as shown in the yellow highlighted region,
and gradually decreasing in frequency with decreasing residual
voltage as given in the white highlighted region).

If the residual voltage is Ri = (1.0−Vi), then an additional
voltage of Vi pu needs to be injected during the fault event
to ensure normal operating condition at bus ‘i’. It is well
known that a dropped voltage of less than 0.05 pu is usually
considered to be within normal voltage variation. Therefore,
for calculating the cumulative probability, one can ignore
the residual voltage of more than 0.95 pu under reasonable
accuracy. Consequently, the cumulative probability of dropped
voltage within 0.05 – 1.00 pu needs to remain non-negative
and close to unity.

A rational approximant has been considered for estimating
the PDF of the dropped voltage, as given by:

f (Vi) =
a− bVi
Vi

; with a ≥ 0 (1)

Exact methodology for the derivation of PDF from the
obtained dropped voltage statistics is not given here for brevity.
As shown in Fig. 2, the PDF of the typical dropped voltage
during voltage sags, or the voltage to be injected satisfies
the indicated analytical expression while the coefficient of
determination of the fit is 95%.

Fig. 2: The dropped voltage frequency distribution at an
arbitrarily chosen bus.

As shown in Appendix A, for the PDF (1), if b ≥ 0,
then, a ≥ b. Additionally, if one requires that the cumulative
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probability to remain within bound for 0.05 – 1.00 pu, then
a ≤ 1/(−ln(0.05) − 1.00 + 0.05) (≈ 0.49). If, b < 0, then
a will be limited to 1/(−ln(0.05)) (≈ 0.33) and b will be
limited to −1/(1.00 − 0.05) (≈ −1.05), for the cumulative
probability to remain bounded within 0.05 – 1.00 pu. The
values of a and b obtained in Fig. 2 satisfies these indicated
criterion. Additionally, one can also obtain annual average sag
occurrence frequency, N , at a given bus, from the dataset
presented in Figs. 2, 3, and 4 of [12], or various other
literature. For the network under consideration, the annual
average event occurrence frequency is 54.

B. Obtaining the Probability of Process Failure
The customer’s process (or load) tripping probability is a

function of the observed dropped voltage. Other parameters,
such as the sag duration and the point-on-wave, are ignored in
this work for simplicity. Although linearly increasing process
failure probability curves are considered in [20], the failure
characteristics also depend on the type of sensitive equip-
ment present within the customer premises. To alleviate this
complexity, a simplified customer’s conditional process failure
probability, P (F = 1|Vi), where the probability of the process
failure, F = 1, is defined to be linearly increasing with
dropped voltage, is considered in this paper for calculating
the benefits of mitigation solution provision.

P (F = 1|Vi) = Vi (2)

C. Calculating the Willingness-to-Pay
1) Calculating the Total Cost without Mitigation Solution

Provision: Calculation of the risk of process failure or the risk
of loss is depicted in Fig. 3.

Fig. 3: Calculation of failure probability.

The total probability of loss can be given by:

P (F = 1) =

∫ 1.00

0.05

P (F = 1|Vi) f (Vi) dVi

=

∫ 1.00

0.05

Vi

(
a− bVi
Vi

)
dVi =

∫ 1.00

0.05

(a− bVi) dVi

≤
∫ 1.00

0.00

(a− bVi) dVi (3)

The upper limit has been used to obtain the overall loss
probability without mitigation solution provision. As shown
in Appendix B, the total probability of failure is less than
unity for all possible cases (b is ≥ 0 and < 0), and therefore,
the considered upper bound is mathematically feasible (from
the probability point of view).

If an expected Ni number of independent events occur in
a typical year (obtained from Monte-Carlo simulation) and
given that the customer i incurs a cost of Ci per event with
probability P (F = 1) (obtained from (3)), the yearly expected
total expense perceived by the customer (Ti) will be:

Ti = CiNi

∫ 1.00

0.00

(a− bVi) dVi (4)

In the absence of a mitigation solution with an expected life
of ‘n’ number of years (following the year of installation),
the life-cycle cost (LCC) incurred, LCCn,di , (based on the
discount rate, d) can be given by:

LCCn,di =
(1 + d)n+1 − 1

d(1 + d)n
CiNi

∫ 1.00

0.00

(a− bVi) dVi

= Ki

∫ 1.00

0.00

(a− bVi) dVi (5)

It is imminent that Ki is a constant for a typical customer.
2) Calculating the Total Cost with Mitigation Solution

Provision: Suppose a mitigation solution with the capability
of injecting a voltage up to V is in place. In that case, the
equipment failure probability, with the dropped voltage being
Vi (≤ V ), will be equal to zero. However, if the dropped
voltage has increased beyond V , owing to the mitigation
solution provided, the customer at the bus ‘i’ will only observe
a residual voltage of (1.00−Vi +V ). Contrarily, the dropped
voltage PDF remains unchanged. Therefore, the conditional
process failure probability will be needed to be modified
based on observed residual voltage. In this regard, the total
probability of process failure will be given by:(∫ V

0.00

0 · a− bVi
Vi

dVi

)
+

(∫ 1.00

V

(Vi − V )
a− bVi
Vi

dVi

)
=

(∫ 1.00

V

(a− bVi) dVi
)
−
(
V

∫ 1.00

V

a− bVi
Vi

dVi

)
=

(∫ 1.00

V

(a− bVi) dVi
)
− V

{
a ln

(
1.00

V

)
− b(1.00− V )

}
≤
(∫ 1.00

V

(a− bVi) dVi
)
− (a− b)V (1.00− V ) (6)

In (6), if Vi ≤ V , the process failure probability is zero, but
the PDF of the sag occurrence is a−bVi

Vi
. Owing to mitigation

solution provision of V , if the sagged voltage is Vi (≥ V ),
the customer will only observe a voltage reduction of Vi −
V , which will also be the probability of customers process
failure (see, (2)). However, the PDF of the sag occurrence
would still be a−bVi

Vi
. As shown in Appendix C, the upper limit

ensures that the PDF in (6) remains mathematically feasible
for all possible cases (total probability is always less than
unity). We utilize the upper limit for calculating the process
failure probability with the mitigation solution provision for
simplicity.

The LCC considering the mitigation solution provision with
the capability injecting a voltage up to V , LCC

n,d

i (V ), can
be similarly calculated using the simplified process failure
probability, utilizing the methodology given in Section II.C.1.

3) Incentive Received from Mitigation Solution Provision:
Therefore, the savings received due to installation of the
mitigation solution up to voltage V will be calculated by
subtracting LCC

n,d

i (V ) from LCCn,di , and one gets:

Ki

{(∫ V

0.00

(a− bVi) dVi

)
+ (a− b)V (1.00− V )

}
(7)

3



4

The constant part of the total benefit received is zero.
The marginal benefit received from the installation of the
mitigation solution, which can also be the customers’ marginal
willingness-to-pay, can be obtained by differentiating savings
received (given in (7)) with respect to the maximum injectable
voltage, V . It can be given by,

Wi(V ) = Ki (2a− b) (1− V ) = αi (1− V ) (8)

Here, αi is constant for a given customer. In the current
context, αi ≥ 0 (note that (2a − b) is always non-negative).
The probability theory also suggests that the marginal benefit
function is zero beyond the interval [0, 1]. Such a linearly
decreasing marginal benefit function has been assumed in [14]
(with slight generalization) to calculate the optimal voltage sag
mitigation solution provision.

D. Discussion on the Derived Linearly Decreasing Benefit
Function

The magnitude of the slope and the y-intercept of the
marginal willingness-to-pay function, αi, is a function of
several parameters. Here, the factor (2a− b) is dependent on
various network-related parameters, such as network topology,
fault rates, and the location of the customers within the
network. The factor Ki is obtained by multiplying several
parameters, such as the annual frequency of occurrence of
sag events, the expense per failure events, and the aggregated
present value factor. The characteristics of the marginal/total
benefit function are shown in Fig. 4.

Fig. 4: Pictorial representation of simplistic willingness-to-pay
function.

Suppose multiple customers are located on the same bus.
In that case, although the PDF of dropped voltage and the
annual sag occurrence frequency can be similar, the expense
per failure events and associated aggregated present value
factor will determine the slope and the y-intercept. If multiple
customers choose to collaborate in the mitigation solution
provision, in the linearly decreasing marginal benefit function,
the x-intercept will remain constant at 1.00 pu. However, the
y-intercept of the aggregated marginal benefit will be a linear
sum of the maximum marginal willingness-to-pay (total will-
ingness to pay will be sum of individual willingness to pay, and
αi of individual customers will be algebraically added). The
benefit function also signifies that a sensitive customer with
higher process failure costs located in a network with higher
annual network-wide fault occurrence will likely be willing to
invest more in the mitigation solution. Correspondingly, the
slope of the marginal benefit function will be higher.

III. OPTIMAL MITIGATION SOLUTION PROVISION WITH
DVRS

Therefore, various network-related parameters are needed
by the customers to be able to derive their willingness-to-pay

function using Monte Carlo simulation. The customers may
also deduce these parameters through multi-year power-quality
measurements. Also, the literature indicates the existence of
the economy of scale in the sag mitigation solution provision,
such as DVRs, and the details can be found in [4]. As
discussed in [14], the existence of such an economy of scale
can be utilized by the customers to install a common mitigation
solution. Generic average total cost (investment + net present
value of operation and maintenance cost) characteristics of
mitigation solution/desired revenue requirement, as reported
in the literature (after removal of the quadratic component of
the average cost curve with negligible weight), can be given
by,

AP (Si) = c− dSi =⇒ AP (V ) = cIi − d(Ii)
2V (9)

Here, Si and Ii are power rating and peak load current
demands of individual customers. Also, c and d are positive
constants, and are different for different mitigation solutions.
We consider DVR as a mitigation solution in this work;
and given the peak load current demands, the average cost
function, (9), is suitably converted to be a function of residual
voltage V alone. Also, it is trivial that (9) is defined within
[0, c

2dIi
], since total cost is decreasing for

(
c

2dIi
,∞
)

and is
negative for (−∞, 0).

Consequently, the total profit as a function of mitigation so-
lution provided, V , will be: (αi − cIi)V −

(
1
2αi − d(Ii)

2
)
V 2.

The profit function is quadratic, the stationary point is
αi−cIi

αi−2d(Ii)2 and existence of maxima and minima will be
driven by 1

2αi − d(Ii)
2. The stationary point is a maxima,

if αi > 2d(Ii)
2, it is a saddle point if αi = 2d(Ii)

2, otherwise
it is a minima. Therefore, it is imminent that depending upon
c, d, αi and Ii, four conditions for calculating the optimal
voltage rating, V ∗, of mitigation devices exists. Also, it is
important to note that the total profit is zero at V = 0.

Condition A. αi < cIi & c ≥ 2dIi: Three cases are pos-
sible. (i) 2d(Ii)

2 < αi < cIi, where the stationary point is
at V ∗ < 0 and it is a maxima. Therefore total profit with
V ≥ 0 is always negative and mitigation solution will never
be provided. (ii) αi = 2d(Ii)

2 ≤ cIi, where the profit function
is linearly decreasing and always negative for V ≥ 0. And, (iii)
αi < 2d(Ii)

2 ≤ cIi, where the stationary point is a minima
with V ∗ ≥ 1. Even if V ∗ = 1, it is easy to capture that the
total profit is negative. We define, V ∗ = 0 for this condition.

Condition B. αi ≥ cIi & c ≥ 2dIi: Two cases are possi-
ble here. (i) If, αi > 2d(Ii)

2, then, V ∗ = αi−cIi
αi−2d(Ii)2 , and

it is a maxima. Also, V ∗ is in [0, 1], and the total profit is
non-negative. (ii) If, αi = 2d(Ii)

2, note that both αi − cIi
and αi − 2d(Ii)

2, would tend to zero, and if we take the
limit, we get V ∗ = 1. Without loss of generality we define
V ∗ = αi−cIi

αi−2d(Ii)2 for this condition.
Condition C. αi ≤ cIi & c < 2dIi: Here αi ≤ cIi <

2d(Ii)
2 signifies, V ∗ is in [0, 1] and it is a minima. Therefore,

mitigation solution will be provided, if the profit is nonnegative
at V = c

2dIi
(beyond this the marginal cost function is

undefined), that is, if, αi ≥ cIi
2− c

2dIi

.
Condition D. αi > cIi & c < 2dIi: Three cases are possi-

ble. (i) If, cIi < αi < 2d(Ii)
2, the stationary point is at V ≤ 0

and it is a minima. (ii) cIi < αi = 2d(Ii)
2, Profit function

is linearly increasing. And, (iii) cIi < 2d(Ii)
2 < αi, here the

stationary point is at V > 1, and this point is a maxima. In
all the three cases, if the total profit is non-negative at c

2dIi
,

4



5

that is, if, αi ≥ cIi
2− c

2dIi

, and we define, V ∗ = c
2dIi

for this
condition.

Conditions C and D can be aggregated together as: if, αi ≥
cIi

2− c
2dIi

and c < 2dIi, then, V ∗ = c
2dIi

; else, V ∗ = 0. All
these four conditions are presented in a condensed form for a
more generic case in Definition 2 of [15].

As discussed earlier, here, αi is a function of the cost of
the individual process failure, most of which is incurred due
to sensitive process. The optimal rating of mitigation solution
provision (V ∗) will be:

V ∗ =

{
0,

c

2dIi
,

αi − cIi
αi − 2d(Ii)2

}
(10)

Therefore, if both sensitive and non-sensitive components
are considered for the determination of peak load demand, the
voltage rating of the mitigation solution will be improperly
sized, which is not desirable. If the sensitive and non-sensitive
components can be isolated, we need to install mitigation
devices for each of the sensitive components separately. Al-
ternatively, multiple sensitive components can be aggregated
together to install a common mitigation solution. Numerous
customers can also participate in this venture and are presented
through an example in the next section.

While the common solution provision can be cost-effective,
such a joint venture suffers from one major disadvantage:
the free-riding of any of the customers. This is because the
voltage improvement for the benefited customers are non-
excludable and is independent of their contribution status. The
cost distribution to avoid such a free-riding (with c ≥ 2dIi)
has been discussed in [14], and the multiple cluster formations
to avoid free-riding has been discussed in [15].

IV. EXAMPLE WITH DVRS AS A MITIGATION SOLUTION

The sag-related information can be obtained from the sam-
ple modified distribution network considered in Section II. The
values of both a and b at the bus under consideration are 0.47.
Given the fault rate at the indicated bus, the customer’s annual
number of sag events, Ni, is 54.

The basic cost related parameters for a typical industrial
customer used in this case study is primarily taken from [4],
and is given as follows:
(i) The cost of sudden interruption of $ 21,516 is considered

as maximum sag cost (Ci), and will be encountered, if
the sag leads to complete process failure.

(ii) The unit investment cost of DVR (with removal of small
quadratic term) is given as,

TP (Si) = 729.96(−0.3225Si + 127.38) $/MVAr (11)

(iii) The annual operational and maintenance cost is assumed
to be 15% of the investment cost. Therefore, the average
total cost will be:

AP (Si) =

(
1 +

n∑
t=1

0.15

(1 + r)t

)
TP (Si) $/MVAr (12)

(iv) The lifetime of the DVR (n) is assumed to be 20 years,
and the investment will be recovered at a discount factor
(d) of 12 %.

Customers of various peak load demands have been consid-
ered for calculating the rating of the DVR as a mitigation de-
vice, and successively, the characteristics of the overall benefit
received from mitigation device installation has been shown in
Fig. 5. It can be seen that with increasing peak load demand,

for the given dataset, both the optimal voltage rating of the
DVR and, consequently, the benefit received decreases. While
the benefit function is independent of customers’ load demand
rating, the average cost function is (ratings of underlying
devices are required to be suitably increased) increasing. Let
us consider that the parameters that dictate Condition B exists
(see, Section III). It is imminent that with increasing peak load
demand (Ii), with the condition remaining similar, V ∗ will
be decreasing. With increasing Ii three additional conditions
(Conditions A, C, and D) may prevail. With Condition A, V ∗
reduces to zero. With Condition C, V ∗ can either be zero,
or, c

2dIi
. It is notable that since c < 2dIi, and αi 6= 2dIi,

αi−cIi
αi−2d(Ii)2 ≥

c
2dIi

. Thus V ∗ is decreasing. This is also true if
condition D prevails. If conditions A and C prevail initially,
with increasing Ii, it will continue to remain there. If condition
D prevails initially, with increasing Ii, it may jump to either
0 or continue to remain in c

2dIi
. Therefore, with increasing

Ii, V ∗ is in general decreasing, as seen in Fig. 5. It can be
further noted that if the cost of sudden interruption increases,
the voltage sag mitigation solution provision is expected to
rise.

Fig. 5: Optimal benefit received by a customer with increasing
peak demand.

From this figure, the customer’s lifetime benefit with 0.75
MVA peak load demand will be $2.3100M. Suppose multiple
customers located on the same bus, and each with a rating
of 0.75 MVA and identical cost of sudden interruption, are
willing to contribute to a common solution. Calculation shows
that in this case, the benefit received by each customer will
be increased to $2.3102M (total peak load demand increased
along with total appropriation). Such an increased benefit
received will be coupled with decrements in the overall cost
(see (11)) compared to the case where each customer installs
their own mitigation device. Therefore, for the given case, it is
beneficial for these customers to behave symbiotically. While,
various other parametric analysis has also been carried out for
the given example, but are not shown here for brevity.

V. CONCLUSION

In this paper, a rudimentary mathematical expression of
the customer’s marginal benefit function or the willingness-
to-pay with respect to the maximum voltage injected from
the mitigation devices is derived using elementary concepts of
the probability theory. The linearly decreasing characteristic
of the willingness-to-pay function is also described. Subse-
quently, the derived expression has been utilized to determine
a mathematical expression of the optimal mitigation solution
requirement (with DVRs as an example). The decreasing
benefit with increasing peak-load demand is also shown but
is expected to be a function of various customers’ costs and
network-related parameters under consideration. Increasing
individual benefits and the decreasing cost with a common
mitigation device installation is expected to incentivize the
customers to behave symbiotically.
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APPENDIX A

The probability density function (PDF), a−bVi

Vi
(with a ≥ 0),

needs to be non-negative ∀Vi ∈ [0.00, 1.00]. This can happen
in two cases, (i) b ≥ 0, and (ii) b < 0. Furthermore, we choose
ε because limVi→0

a−bVi

Vi
→ ∞, and

∫ 1.00

ε
a−bVi

Vi
≤ 1. This

assumption is justifiable considering ±5% voltage variation,
or ε = 0.05, to be within normal bound.

Case (i): If b ≥ 0, then a − bVi ≥ 0, or a/b ≥
Vi, ∀ Vi ∈ [0.00, 1.00]. Which is true, if a ≥ b. Additionally,∫ 1.00

ε
a−bVi

Vi
= −a ln ε − b(1.00 − ε) ≤ 1. Now, because,

a/b ≥ 1.00, one can write b = a − γ where, γ ≥ 0.
Substituting, we get: a(− ln ε− 1.00 + ε) + γ(1.00− ε) ≤ 1.
Note that a, γ are required to be ≥ 0 in the current context.
All these three inequalities suggests that the value of a will
be limited to 1/(− ln ε− 1.00 + ε). With ε = 0.05, a will be
limited to ≈ 0.49.

Case (ii): If b < 0, then a − bVi ≥ 0, ∀Vi ∈ [0.00, 1.00].
Suppose, a(− ln ε) + γ(1.00 − ε) ≤ 1; where, γ = −b > 0.
Note that a, γ, are required to be ≥ 0 in the current context.
Therefore, a ≤ (1/− ln ε) and b ≥ −1/(1.00−ε) respectively.
With ε = 0.05, the upper and lower limits of a and b are 0.33,
and -1.05 respectively.

APPENDIX B

The existance of limits 0 ≤
∫ 1.00

0.05
(a− bVi) dVi ≤∫ 1.00

0.00
(a− bVi) dVi ≤ 1.0 needs to be validated for both the

cases indicated in Appendix A.
Case (i): Here, b ≥ 0. Now,

∫ 1.00

0.05
(a− bVi) dVi =

a(1.00 − 0.05) − b/2(1.002 − 0.052) = b(1.00 −
0.05) (a/b− 1/2(1.00 + 0.05)). Since, 1/2(1.00 + 0.05) ≤ 1

and a/b ≥ 1, therefore,
∫ 1.00

0.05
(a− bVi) dVi ≥ 0. Again,∫ 1.00

0.00
(a− bVi) dVi = a(1.00− 0.00)− b/2(1.002 − 0.002) ≤

a = 1/(− ln ε − 1.00 + 0.05) ≤ 1.0. Furthermore, a(1.00 −
0.00) − b/2(1.002 − 0.002) − a(1.00 − 0.05) − b/2(1.002 −
0.052) = 0.05b(a/b− 0.05/4) ≥ 0 (b ≥ 0 and a/b ≥ 1.00).

Case (ii): With b < 0, we consider
∫ 1.00

0.05
(a+ kVi) dVi,

and k = −b. Here, the minimum of a(1.00 − 0.05) +

k/2(1.002−0.052) is 0. The maximum of
∫ 1.00

0.00
(a+ kVi) dVi

is (−1/ ln 0.05) + 1/ (2(1.00− 0.05)), which is ≤ 1. Further-
more, a(1.00−0.00)+k/2(1.002−0.002)−a(1.00−0.05)−
k/2(1.002 − 0.052) = 0.05a+ 0.052k/2 ≥ 0.

APPENDIX C

Here,
(∫ 1.00

V
(a− bVi) dVi

)
−

V
{
a ln

(
1.00
V

)
− b(1.00− V )

}
=

a (1.00− V − V ln(1.00/V )) − b/2 (1.00− V )
2. Again,(∫ 1.00

V
(a− bVi) dVi

)
− (a− b)V (1.00 − V ) =

(a− b/2) (1.00− V )
2. It is trivial to note that

ln(1.00/V ) ≥ (1.00 − V ), ∀V ∈ (0.00, 1.00],
which lead us to a (1.00− V − V ln(1.00/V )) −
b/2 (1.00− V )

2 ≤ (a− b/2) (1.00− V )
2. To prove

the feasibility of the PDF, we need to prove that
a (1.00− V − V ln(1.00/V )) − b/2 (1.00− V )

2 ≥ 0
and (a− b/2) (1.00− V )

2 ≤ 1.00 for both the cases
indicated in Appendix A.

Case (i): Here, b ≥ 0 and a/b ≥ 1.00. It is known
that 2 (1.00− V − V ln(1.00/V )) ≥ (1.00− V )

2
, ∀V ∈

(0.00, 1.00]. Which implies, 2a (1.00− V − V ln(1.00/V )) ≥

a (1.00− V )
2 ≥ b (1.00− V )

2. This provides one with,
a (1.00− V − V ln(1.00/V )) − (b/2) (1.00− V )

2 ≥ 0. Fur-
thermore, in V ∈ (0.00, 1.00], (1.00− V )

2 ≤ 1.00 and
(a− b/2) ≤ a. Therefore, (a− b/2) (1.00− V )

2 ≤ a ≤ 1.00.
Case (ii): Again consider that b < 0 with k = −b.

Now, both (1.00− V − V ln(1.00/V )) (∀V ∈ (0.00, 1.00])
and (1.00− V )

2 are ≥ 0. This provides us with
a (1.00− V − V ln(1.00/V )) + k/2 (1.00− V )

2 ≥ 0. Again,
in V ∈ (0.00, 1.00], (1.00− V )

2 ≤ 1.00 and (a+ k/2) ≤
1.00. Therefore, (a− b/2) (1.00− V )

2 ≤ 1.
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