

Anurag K. Srivastava and Subir Majumder West Virginia University Email: anurag.srivastava@mail.wvu.edu

Super Session presentations for the 2022 IEEE Power & Energy Society General Meeting Tuesday, July 19, 2022

Weather related power interruptions per quarter

New England

Connecticut				
Maine				
Massachusetts				
New Hampshire				
Rhode Island				
Vermont				
Pacific				
California				
Oregon				
Washington				
South				
Arkansas				
Louisiana				
Oklahoma				
Texas				

Summary

• During extreme weather events, situational awareness for grid operator is critical and the synergy between human operators and tools is required

- Proactive Control requires assessing expected impact of an event
- Optimization need to be solved with all the constraints, which becomes challenging for large T&D and discrete variables
- Machine learning approaches or ML assisted optimization might be helpful for faster convergence

RTMOD Use Case 1: Data-driven Distribution System Reconfiguration with microgrid using D-PMU

- D-PMUs can help us proactive reconfiguration of the system
- Based on the measurement we can deploy pre-event reconfiguration with controlled islanding and using shift-and-shed of loads
- Minimize impact of expected outage by preevent shift-and-shed of loads

Proactive Controlled Assets Isolation

Algorithms: Distribution System Reconfiguration using D-PMU

Algorithm 1: Resilient Shift-and-Shed Proactive Control				
Algorithm Using D-PMU Data.				
Input: $F_i = [V_i , \theta_i, P_i, Q_i]$, for $i = 1 \dots n_s, \delta_{ij}$				
(Eq. 15)				
Output: Breaker status switching sequence				
Phasor aggregation at DMS				
1: Data filtration				
2: Initialize array $P_i j$ containing line flow data				
3: for $i = 1$ to n_s do				
4: Compute line flows between nodes <i>i</i> and <i>j</i> ($j \neq i$)				
(Eq. 13)				
5: Compute $\frac{\Delta \delta_i}{\Delta t}$ (Eq. 14)				
6: if $(\frac{\Delta \delta_i}{\Delta t} \ge \overline{\delta_{threshold}})$ then				
7: Append <i>i</i> to F^{risk}				
8: Change CLOSED switch to OPEN at bus <i>i</i>				
9: Change N.O. switch to CLOSED, between buses <i>i</i>				
and j				
10: if $\delta_{ij^{new}} < \delta_{ij^{prev}}$ and $\delta_{ij^{new}} \to 0$ then				
11: Continue				
12: else				
13: Return to Line 4				
14: end if				
15: else				
16: Append i to F^{normal}				
17: end if				
18: end for				
19: return F^{risk} , F^{normal} , δ_i , $P_i j$				

Alge	prithm 2: Resiliency-Driven Reconfiguration.
Ι	nput: Feeder at risk of being islanded due to storm,
	$f_i^{normal}, \delta_{t-1}$
(Dutput: R_i , Switch-on, switch status
1:	Determine load transfer required
2:	Predict δ_t (Eq. 15)
3:	Choose the feeder edge with lowest line-flow (from
	Algorithm 1)
4:	Compute $\frac{\Delta \delta_i}{\Delta t}$ (Eq. 14)
5:	if $\frac{\Delta \delta_i}{\Delta t} \leq \delta_{threshold}$ then
6:	Compute switching sequence, available paths
	(p(i, j)) using M.S.T.
7:	if $n(p(i, j)) > 1$ then
8:	Determine R_i for each p
9:	Sort all R_i by magnitude
10:	Check for power flow convergence
11:	if convergence is true then
12:	return Switching sequence (i.e. path) that
	yielded highest R_i
13:	else if convergence is false then
14:	Choose next highest R_i path
15:	Go to Line 10
16:	else
17:	Shed non-critical load
18:	end if
19:	else
20:	Check for power flow convergence of only path p
21:	if convergence is true then
22:	return Switching sequence of path p
23:	else
24:	Shed non-critical load
25:	end if
26:	end if
27:	else
28:	Sned non-critical load
29:	ena II Deservatives statistical las de servatives d
30:	Repeat iteration until all critical loads are restored

Proactive Reconfiguration for Distribution System with Microgrids using D-PMU

Resiliency Resource	Algorithm 1 and 2 used	Loss (kW)	Critical Load Loss (kW)	Resiliency [26]	Resiliency (AHP-based)
DG 1	No	1200	500	0.00083	0.16725
DG 1	Yes	1200	500	0.00083	0.20000
DG 2	No	1300	1000	0.00077	0.12500
DG 2	Yes	1100	500	0.00091	0.22500
DG 1, DG 2	No	1100	500	0.00091	0.27250
DG 1, DG 2	Yes	800	500	0.00125	0.32650
DG 1, DG 2, Solar	No	1100	500	0.00091	0.27250
DG 1, DG 2, Solar	Yes	400	0	0.00250	0.42125

Resiliency Indices Comparison: Networked Microgrids

Feeder Specific Resiliency Metrics

Feeder	Summer	Winter	Before Event	Without D-PMU	With D-PMU
F-1	0.78031	0.73216	0.85462	0.17819	0.58191
F-2	0.58021	0.52973	0.65232	0	0.38985
F-3	0.57223	0.56973	0.64823	0	0.26541
F-4	0.52387	0.54813	0.56648	0.19871	0.38911
F-5	0.58083	0.52364	0.60247	0	0.28192
F-6	0.46337	0.53368	0.53912	0	0.11837
F-7	0.81293	0.66107	0.72651	0.09321	0.48912
F-8	0.76938	0.68912	0.81034	0.00212	0.8103
F-9	0.64931	0.64236	0.62566	0	0.16839
F-10	0.57223	0.56981	0.64237	0	0.16892

$$\max \sum_{\forall t \in T} \sum_{\forall i \in B} k_i^{CL} \alpha_i^t (2 - \lambda_i) P_i^{CL, t} + k_i^{NCL} \beta_i^t (2 - \lambda_i) P_i^{NCL, t}$$

RT-RMOD Use Case 2: Two Stage Proactive Control with Microgrids

- Outage of energized lines and energized generators due to expected events will cause more impact compared to unenergized lines and generators
- Not all available switches available at the disposal of the operator are *remotely* operable
- When the forecast is certain, and disaster cannot be avoided, switching operations are important for resiliency improvement
- Two stage includes manually operated switch followed by automatic switches

Test Systems with microgrids

Modified IEEE 123-Bus Test System

45-node CEC Islanded Microgrid System

Two Stage Proactive Control Algorithm

Two-Stage Proactive Control: Results

- Scenario 1: Disaster strikes upon the network without prior preparation
- Scenario 2: Network is proactively reconfigured, but, to be outaged part removed apriori
- Scenario 3: Outaged part is operated through remote switches, only minutes before

Results for IEEE 123 Node System

Case Scenario: Reinforcement Learning based Proactive Control for Transmission Grid Resilience

- Conventional approaches are resource intensive especially during resiliency events
- Sub-optimal operation can be detrimental to overall operation of the grid
- ML-approaches can address some of the real-time decisionmaking requirements through partial operational set-points
- Conventional approach and ML-approach would go hand in hand

Use Case 3: RL-agent Learning for Proactive Control

With University of Houston

Interactive agent for Wildfire

RL-agent Performance

Summary

IFFE

- Proactive Control requires assessing expected impact of an event
- Optimization need to be solved with all the constraints, which becomes challenging for large T&D and discrete variables
- Machine learning approaches or ML assisted optimization might be helpful for faster convergence

Thanks to my students, collaborators and funding agencies including DOE UI-ASSIST, RADIANCE and NSF to support this work.

