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RTMOD Use Case 1: Data-driven
Distribution System Reconfiguration
with microgrid using D-PMU

* D-PMUs can help us
proactive reconfiguration
of the system

* Based on the
measurement we can
deploy pre-event

reconfiguration with
controlled islanding and
using shift-and-shed of
loads

* Minimize impact of
expected outage by pre-
event shift-and-shed of
loads
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Case Scenario: .
Reinforcement

Learning based .
Proactive Control for
Transmission Grid .
Resilience

Conventional approaches are resource intensive — especially
during resiliency events

Sub-optimal operation can be detrimental to overall operation of
the grid

ML-approaches can address some of the real-time decision-
making requirements through partial operational set-points

Conventional approach and ML-approach would go hand in hand 12

Sensor-interfaced Distribution Network
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Situational Awareness (SA) & Decission Support

* Outage of energized lines and energized generators due to expected events will
cause more impact compared to unenergized lines and generators

le switches

operable

ilable at the disp

| of the operator are remotely

* When the forecast is certain, and disaster cannot be avoided, switching operations
are important for resiliency improvement

* Two stage includes manually operated switch followed by automatic switches 7

Summary
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* During extreme weather events, situational awareness for grid operator

is critical and the synergy between human operators and tools is required

* Proactive Control requires assessing expected impact of an event

* Optimization need to be solved with all the constraints, which becomes

challenging for large T&D and discrete variables

* Machine learning approaches or ML assisted optimization might be

helpful for faster convergence
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Algorithms: Distribution System
Reconfiguration using D-PMU

Algorithm 2: Resiliency-Driven Reconfiguration.

Algorithm 1: Resilient Shift-and-Shed Proactive Control
Algorithm Using D-PMU Data.
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12:
13:
14:
15:
16:
17:
18:
19:

Input: F; = [|V;|,0;, P;,Q;], fori =1...n, d;;
(Eq. 15)

Output: Breaker status switching sequence

Phasor aggregation at DMS

Data filtration

Initialize array P;j containing line flow data

for i = 1ton, do
Compute line flows between nodes i and j (j # i)
(Eq. 13)

if ( Ab, > 6”“ e shoid) then
Appcnd ito Frisk
Change CLOSED switch to OPEN at bus 4
Change N.O. switch to CLOSED, between buses ¢
and j
if 0;jnew < Ojjprev and djjnew — O then
Continue
else
Return to Line 4
end if
else
Append ?: tO F?’LOT'THG.‘
end if
end for
return Frésk’ an'm.a.l, 5!,, R‘,}

Input: Feeder at risk of being islanded due to storm,
fﬂormﬂi 6!‘, 1
Output R;, Switch-on, switch status
Determine load transfer required
Predict 4, (Eq. 15)
3: Choose the feeder edge with lowest line-flow (from
Algnrithm I)
4: Compule m' (Eq. 14)

Mi—

5:
6: Compule ‘;wﬂchmg sequence, available paths
(p(i, 7)) using M.S.T.
7:  ifn(p(i,7)) > 1 then
8: Determine R; for each p
9: Sort all ?; by magnitude
10: Check for power flow convergence
11: if convergence is true then
12: return Switching sequence (i.e. path) that
yielded highest [2;
13: else if convergence is false then
14: Choose next highest R; path
15: Go to Line 10
16: else
17: Shed non-critical load
18: end if
19: else
20: Check for power flow convergence of only path p
21: il convergence is true then
22: return Switching sequence of path p
23: else
24: Shed non-critical load
25: end if
26: end if
27:  else
28: Shed non-critical load
29: endif

30: Repeat iteration until all critical loads are restored




Proactive Reconfiguration for Distribution
System with Microgrids using D-PMU

Resiliency Indices Comparison: Networked Microgrids

Resiliency Resource Algorithm 1 and 2 used Loss (kW) Critical Load Loss (kW) Resiliency [26] Resiliency (AHP-based)
DG | No 1200 500 0.00083 0.16725
DG 1 Yes 1200 500 0.00083 0.20000
DG 2 No 1300 1000 0.00077 0.12500
DG 2 Yes 1100 500 0.00091 0.22500
DG 1, DG 2 No 1100 500 0.00091 0.27250
DG I, DG 2 Yes 800 500 0.00125 0.32650
DG 1. DG 2, Solar No 1100 500 0.00091 0.27250
DG I, DG 2, Solar Yes 400 0 0.00250 0.42125
Feeder Specific Resiliency Metrics

Feeder Summer Winter Before Event Without D-PMU With D-PMU

F-1 0.78031 | 0.73216 0.85462 0.17819 0.58191

F-2 0.58021 0.52973 0.65232 0 0.33985

F-3 0.57223 | 0.56973 0.64823 0 0.26541

F-4 0.52387 0.54813 0.56648 0.19871 0.38911

F-5 0.58083 0.523064 0.60247 0 0.28192

F-6 0.46337 | 0.53368 0.53912 0 0.11837

E-7 0.81293 0.66107 0.72651 0.09321 0.48912

F-8 0.76938 | 0.68912 0.81034 0.00212 0.8103

F-9 0.64931 | 0.64236 0.62566 0 0.16839

F-10 0.57223 0.56981 0.64237 0 0.16892
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Outage of energized lines and energized generators due to expected events will
cause more impact compared to unenergized lines and generators

RT-RMOD Use
Case 2: Two Stage

P rod Ct|Ve CO nt rO| When the forecast is certain, and disaster cannot be avoided, switching operations
W|t h |\/| | C rog ri d S are important for resiliency improvement

* Two stage includes manually operated switch followed by automatic switches

Not all available switches available at the disposal of the operator are remotely
operable



Test Systems with microgrids

§ Substation /Reference Node @ Diesel Generator —f{%— Automated Switch
[ Non-Critical Load = Battery Storage Device 3{6 Manually Operated Switch
{1 Critical Loads DS, S/W Closed Post Stage 2 j\r Opened S/W
% S/W Closed Post Stage 1 B HILF Scenario B Requisite Proactive Disconnection
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45-node CEC Islanded Microgrid System

Modified IEEE 123-Bus Test System



Two Stage Proactive Control Algorithm
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(b) Resiliency Indices for Isolated 45-Node System

Two-Stage Proactive Control: Results

* Scenario 1: Disaster strikes upon the network without prior preparation

* Scenario 2: Network is proactively reconfigured, but, to be outaged part removed apriori

e Scenario 3: Outaged part is operated through remote switches, only minutes before

10



Results for IEEE 123 Node System
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Ca-se Scenaﬂo- * Conventional approaches are resource intensive — especially
Reinforcement during resiliency events

Learni Ng based Sub-optimal operation can be detrimental to overall operation of

Proactive Control for  thegrid

Transmission Grid ML-approaches can address some of the real-time decision-
RESi | ience making requirements through partial operational set-points

* Conventional approach and ML-approach would go hand in hand



Use Case 3: RL-agent Learning for Proactive Control
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Interactive agent for Wildfire
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Summary | le#es | QIEEE

 During extreme weather events, situational awareness for grid operator
is critical and the synergy between human operators and tools is required

 Proactive Control requires assessing expected impact of an event

 Optimization need to be solved with all the constraints, which becomes
challenging for large T&D and discrete variables

 Machine learning approaches or ML assisted optimization might be

helpful for faster convergence
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