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RTMOD Use Case 1: Data-driven 
Distribution System Reconfiguration 
with microgrid using D-PMU

• D-PMUs can help us 
proactive reconfiguration 
of the system

• Based on the 
measurement we can 
deploy pre-event 
reconfiguration with 
controlled islanding and 
using shift-and-shed of 
loads

• Minimize impact of 
expected outage by pre-
event shift-and-shed of 
loads
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Proactive Controlled Assets Isolation 



Algorithms: Distribution System 
Reconfiguration using D-PMU
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Resiliency Indices Comparison: Networked Microgrids

Feeder Specific Resiliency Metrics

Proactive Reconfiguration for Distribution 
System with Microgrids using D-PMU



RT-RMOD Use 
Case 2: Two Stage 
Proactive Control 
with Microgrids

• Outage of energized lines and energized generators due to expected events will 
cause more impact compared to unenergized lines and generators

• Not all available switches available at the disposal of the operator are remotely 
operable

• When the forecast is certain, and disaster cannot be avoided, switching operations 
are important for resiliency improvement

• Two stage includes manually operated switch followed by automatic switches 7

RT-RMOD
- Estimate pre-event Threats
- Resiliency Metric
- Proactive Control



Test Systems with microgrids

Modified IEEE 123-Bus Test System 45-node CEC Islanded Microgrid System
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Two Stage Proactive Control Algorithm
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Two-Stage Proactive Control: Results

• Scenario 1: Disaster strikes upon the network without prior preparation

• Scenario 2: Network is proactively reconfigured, but, to be outaged part removed apriori

• Scenario 3: Outaged part is operated through remote switches, only minutes before  
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Results for IEEE 123 Node System

          
         

   

 
  
   
  
 
 
  

  
  
 

   

   

   

   

   

 
 
  
  
 
 
 
  
  
 
  
 
 

 
  
  
  
 
  
 

  
          

        

   

 
  
   
  
 
 
  

  
  
 

   

   

   

   

   

 
 
  
  
 
 
 
  
  
 
  
 
 

 
  
  
  
 
  
 

 
  
   
  
 
 
  

  
  
 

   

   

   

   

   

  

          

         

   

 
 
  
  
 
 
 
  
  
 
  
 
 

 
  
  
  
 
  
 

 
 
  
  
 
 
 
  
  
 
  
 
 

 
  
  
  
 
  
 

  
          

          

   

 
  
   
  
 
 
  

  
  
 

   

   

   

   

   

    
          

         

   

 
  
   
  
 
 
  

  
  
 

   

   

   

   

   

                                                   

                                           
 
  
  
 
 
 
  
  
 
  
 
 

 
  
  
  
 
  
 

  

 
 
  
  
 
  
  
  
  
  
 

    
          

        

   

                                                   

                                          

 
  
   
  
 
 
  

  
  
 

   

   

   

   

   



Case Scenario: 
Reinforcement 
Learning based 
Proactive Control for 
Transmission Grid 
Resilience

• Conventional approaches are resource intensive – especially 
during resiliency events

• Sub-optimal operation can be detrimental to overall operation of 
the grid

• ML-approaches can address some of the real-time decision-
making requirements through partial operational set-points

• Conventional approach and ML-approach would go hand in hand 12
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Use Case 3: RL-agent Learning for Proactive Control 

With University of Houston
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Interactive agent for Wildfire 
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RL-agent Performance



Summary

• During extreme weather events, situational awareness for grid operator 

is critical and the synergy between human operators and tools is required

• Proactive Control requires assessing expected impact of an event

• Optimization need to be solved with all the constraints, which becomes 

challenging for large T&D and discrete variables

• Machine learning approaches or ML assisted optimization might be 

helpful for faster convergence
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