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Enabling Resiliency \ feps

Number of increasing weather and cyber events
Need proactive and corrective optimal control

Need scalable solutions with increasing state and control
variables

Distributed Optimization offers scalable and resilient control

DO with discrete variable
Nonlinear objective functions and constraints
O EVEGES * Deployment challenges
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Algorithms
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Algorithms/ Tools

Distributed optimization
algorithm considering
continuous and discrete
variables, faster
convergence and
accuracy to enable
resilient control,
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What can we do about it?

Resilience
Metric
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Metrics

Measure effectiveness of
alternative solutions to
enable resilience

Testbed
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Testbed for

Validation

Validate algorithms and
tools for deployment
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Key efforts are needed to solve the future grid problem with increasing extreme events
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Metric is needed to

compare alternative

solutions to enable
resilience

Grid monitoring and control
requires distributed
solutions for scalability

Supporting computing
e infrastructure need to be
Distributzd cpnlrp! aTd scalable and fault-tolerant
"‘eal_;‘?:cr:::it dlsrecsrill‘i:::q"o for resilient DER-rich electric
grid and need to validated
with the testbed




Optimization
Algorithms

]

Algorithms/ Tools

Distributed optimization
algorithm considering
continuous and discrete
variables, faster
convergence and
accuracy to enable
resilient control,

N\
\

Metrics

Measure effectiveness of

alternative solutions to
enable resilience

Testbed for

Validation

Validate algorithms and
tools for deployment



. . _ /?Es
Distributed Volt-Var Control in (gres | GIEEE

Distribution System (OPT-DIST VC)
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Each k" controller performs the following steps

Step 1 (Measuring): vy (1)

Local variables

Step 2 (Cale

Gt +1) = G (D) — (»{Ak(r) — M(t) 44
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Step 3 (Injecting Reactive Power):

Step 4 (Communicating): Send values [} (g (7
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> Only neighbor phase connections are non-zero,

Block sparse matrix: Elements belonging to

others are zero

4

Block sparsity enables this reactive power
setpoint calculation to be distributed which
means we only need () values of neighbors

Distributed Optimal Voltage Control for Three Phase Unbalanced
Distribution Systems with DERs
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Distributed Optimization
with Discrete Variables
 Legacy devices introducing Discrete Variables
» Switched Voltage Regulator During overvoltage condition due to surplus in PV generation,
. CBs can lower the voltage preventing PV active power curtailment
- On Load Tap Changmg Transformers During Under-voltage, SVR can improve voltage profile thus
- Switched Capacitor Banks reducing system losses
» Switches
- Sectionalizer At times of power outages, the smart co-ordination of switches
_ can ensure network restoration in optimized way and improve
Recloser self healing properties of grid.
- Tie Switches

A coordinated operation of these devices leads to an
efficient operation of the Power System
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Challenges

Discrete Variables make the problem non-convex and non linear

Mixed Integer Non linear programming problem in a distributed way is an NP-hard problem

Implementing continuous relaxation to solve the optimization problem and rounding off later does
not ensure convergence and might violate the constraints

In most cases, feedback based approaches are not suitable due to repetitive fluctuation

Evaluating the performance and choosing the best combination from a combinatorial analysis for the
discrete variables is very difficult without a root subsystem in a completely distributed way
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Review of Key Approaches

Problem Obj. func. Discrete Distributed Boundary Communication | Decision Comment
Spec minimize Algorithm Algorithm Variable requirements Variable

MIQP Generation Quadratic ADMM Auxiliary variables representing Neighboring OoLTC Guarantees
Cost & penalty term the increments in real and Areas SCB convergence and
System Loss  for non integer imaginary part of voltages at optimality
values boundary buses
[2] MISOCP Active Branch & ADMM Tie-line P and Q, primal and dual Neighboring oLTC No guarantee on
with cutting power Bound residual, boundary node voltage, areas convergence and
planes & curtailment objective function value of optimality
Angle Cost & upstream and downstream
Relaxation system Loss region, SVR tap position
[3] MIQP Generation Ordinal Dual Lagrange Multipliers and primal Neighboring OLTC SCB Guarantees
Cost & Optimization Decomposition  variables of boundary buses areas & root convergence to a
System Loss subsystems good enough
solution

[1] W. Lu, M. Liu, S. Lin and L. Li, "Incremental-Oriented ADMM for Distributed Optimal Power Flow With Discrete Variables in Distribution Networks," in IEEE Transactions on Smart
Grid, vol. 10, no. 6, pp. 6320-6331, Nov. 2019

[2] Y. Liu, L. Guo, C. Lu, Y. Chai, S. Gao and B. Xu, "A Fully Distributed Voltage Optimization Method for Distribution Networks Considering Integer Constraints of Step Voltage
Regulators," in IEEE Access, vol. 7, pp. 60055-60066, 2019

[3] C. Lin and S. Lin, "Distributed Optimal Power Flow With Discrete Control Variables of Large Distributed Power Systems," in IEEE Transactions on Power Systems, vol. 23, no. 3, pp.
1383-1392, Aug. 2008



Distributed Approach for Optimal

restoration: An Example
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Algorithms/ Tools

Distributed optimization
algorithm considering
continuous and discrete
variables, faster
convergence and
accuracy to enable
resilient control,

Resilience

Metric
Metri Testbed for
eilrics . o
Validation
Measure effectiveness of Validate algorithms and
alternative solutions to tools for deployment

enable resilience
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Before Event

A.

Inspired by CDC Public Health Emergency
Preparedness and Response and Weighted
Sum Model (WSM).

Measuring Resilience

Anticipate
How well is the system prepared for the
predicted impact of an incoming event?

Withstand

How well can system continue to supply critical loads
during event?

Recover

How quickly can system recover from event and

continue supply to critical loads? And at what cost?

w/o resilience enabling controls

w/ resilience enabling controls ——
Proactive actions l
= Anticipate -

Absorptive

actions ,
Restorative

actions

—[-En{'



During Event

W.

Using system characteristics-based factors,
graph theory, and Multi-Criteria Decision
Making (MCDM): Analytical Hierarchal
Process (AHP).

Measuring Resilience

Anticipate

How well is the system prepared for the predicted
impact of an incoming event?

Withstand

How well can system continue to supply
critical loads during event?

Recover

How quickly can system recover from event and
continue supply to critical loads? And at what cost?

w/o resilience enabling controls

w/ resilience enabling controls
Proactive actions '

“uAnticipete

Absorptive

actions .
‘ Restorative

actions
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After Event

R.

Using system characteristics-based
factors, graph theory, and Multi-Criteria
Decision Making (MCDM): Analytical
Hierarchal Process (AHP).

Measuring Resilience

Anticipate

How well is the system prepared for the predicted
impact of an incoming event?

Withstand

How well can system continue to supply critical loads
during event?

Recover

How quickly can system recover from event and
continue supply to critical loads? And at what cost?

w/o resilience enabling controls
w/ resilience enabling controls
Proactive actions

Absorptive
actions

Restorative
actions
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Algorithms/ Tools

Distributed optimization
algorithm considering
continuous and discrete
variables, faster
convergence and
accuracy to enable
resilient control,

Metrics

Measure effectiveness of
alternative solutions to
enable resilience

Testbed

3

Testbed for

Validation

Validate algorithms and
tools for deployment
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Cyber-Physical Testbed: Distributed Volt Var \ @ns \ $IEEE
Control in Distribution Systems
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Distributed Volt-Watt Control in Distribution Sv%ms @: ‘Q'EEE
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Increasing adverse events
and integration of
distributed energy resources
results in higher number of
state and control variables
and requires scalable and
resilient solutions

Metric is needed to

compare alternative

solutions to enable
resilience

Grid monitoring and control
requires distributed
solutions for scalability

Distributed control and
management is critical to
enhance grid resiliency

< IEEE
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Supporting computing
infrastructure need to be
scalable and fault-tolerant

for resilient DER-rich electric
grid and need to validated
with the testbed
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