

Distributed Optimization for the Resilient Power Grid

Anurag K. Srivastava, Srayashi Konar, Jannatul Adan, Subir Majumder West Virginia University Email: anurag.srivastava@mail.wvu.edu

Panel Session presentations for the 2022 IEEE Power & Energy Society General Meeting Thursday, July 21, 2022

Enabling Resiliency

Needs

Solution

Power & Energy Society*

• Number of increasing weather and cyber events

- Need proactive and corrective optimal control
- Need scalable solutions with increasing state and control variables

• Distributed Optimization offers scalable and resilient control

• DO with discrete variable

- Nonlinear objective functions and constraints
- Challenges Deployment challenges

What can we do about it?

Optimization Algorithms

Algorithms/ Tools

Distributed optimization algorithm considering continuous and discrete variables, faster convergence and accuracy to enable resilient control,

Testbed Testbed for Validation Validate algorithms and tools for deployment • • •

. . .

Key efforts are needed to solve the future grid problem with increasing extreme events

Optimization Algorithms

Algorithms/ Tools

Distributed optimization algorithm considering continuous and discrete variables, faster convergence and accuracy to enable resilient control,

Metrics Measure effectiveness of alternative solutions to enable resilience

Testbed for Validation Validate algorithms and tools for deployment

Distributed Volt-Var Control in Distribution System (OPT-DIST VC)

Each kth controller performs the following steps

Block sparse matrix: Elements belonging to Only neighbor phase connections are non-zero, others are zero

Block sparsity enables this reactive power setpoint calculation to be distributed which means we only need Ω values of neighbors

Distributed Optimal Voltage Control for Three Phase Unbalanced Distribution Systems with DERs

Voltage profile with distributed control

Reactive Power injection with distributed control

Distributed Optimization with Discrete Variables

- Legacy devices introducing Discrete Variables
 - Switched Voltage Regulator
 - On Load Tap Changing Transformers
 - Switched Capacitor Banks
 - ➤Switches
 - Sectionalizer
 - Recloser
 - Tie Switches

A coordinated operation of these devices leads to an efficient operation of the Power System

- During overvoltage condition due to surplus in PV generation, CBs can lower the voltage preventing PV active power curtailment
- During Under-voltage, SVR can improve voltage profile thus reducing system losses

Distributed Optimization with Discrete Variables

Review of Key Approaches

Ref.	Problem Spec	Obj. func. minimize	Discrete Algorithm	Distributed Algorithm	Boundary Variable	Communication requirements	Decision Variable	Comment
[1]	MIQP	Generation Cost & System Loss	Quadratic penalty term for non integer values	ADMM	Auxiliary variables representing the increments in real and imaginary part of voltages at boundary buses	Neighboring Areas	OLTC SCB	Guarantees convergence and optimality
[2]	MISOCP with cutting planes & Angle Relaxation	Active power curtailment Cost & system Loss	Branch & Bound	ADMM	Tie-line P and Q, primal and dual residual, boundary node voltage, objective function value of upstream and downstream region, SVR tap position	Neighboring areas	OLTC	No guarantee on convergence and optimality
[3]	MIQP	Generation Cost & System Loss	Ordinal Optimization	Dual Decomposition	Lagrange Multipliers and primal variables of boundary buses	Neighboring areas & root subsystems	OLTC SCB	Guarantees convergence to a good enough solution

[1] W. Lu, M. Liu, S. Lin and L. Li, "Incremental-Oriented ADMM for Distributed Optimal Power Flow With Discrete Variables in Distribution Networks," in *IEEE Transactions on Smart Grid*, vol. 10, no. 6, pp. 6320-6331, Nov. 2019

[2] Y. Liu, L. Guo, C. Lu, Y. Chai, S. Gao and B. Xu, "A Fully Distributed Voltage Optimization Method for Distribution Networks Considering Integer Constraints of Step Voltage Regulators," in *IEEE Access*, vol. 7, pp. 60055-60066, 2019

[3] C. Lin and S. Lin, "Distributed Optimal Power Flow With Discrete Control Variables of Large Distributed Power Systems," in *IEEE Transactions on Power Systems*, vol. 23, no. 3, pp. 1383-1392, Aug. 2008

Distributed Approach for Optimal restoration: An Example

Residual

Algorithms/ Tools

Distributed optimization algorithm considering continuous and discrete variables, faster convergence and accuracy to enable resilient control,

Testbed for Validation Validate algorithms and tools for deployment

Before Event

A.W.R.

Inspired by CDC Public Health Emergency Preparedness and Response and Weighted Sum Model (WSM).

Anticipate

How well is the system prepared for the predicted impact of an incoming event?

Withstand

How well can system continue to supply critical loads during event?

Recover

How quickly can system recover from event and continue supply to critical loads? And at what cost?

14

During Event

A.W.R.

Using system characteristics-based factors, graph theory, and Multi-Criteria Decision Making (MCDM): Analytical Hierarchal Process (AHP).

Measuring Resilience

Anticipate

How well is the system prepared for the predicted impact of an incoming event?

Withstand

How well can system continue to supply critical loads during event?

Recover

How quickly can system recover from event and continue supply to critical loads? And at what cost?

After Event

A.W.R.

Using system characteristics-based factors, graph theory, and Multi-Criteria Decision Making (MCDM): Analytical Hierarchal Process (AHP).

Measuring Resilience

Anticipate

How well is the system prepared for the predicted impact of an incoming event?

Withstand

How well can system continue to supply critical loads during event?

Recover

How quickly can system recover from event and continue supply to critical loads? And at what cost?

16

Algorithms/ Tools

Distributed optimization algorithm considering continuous and discrete variables, faster convergence and accuracy to enable resilient control,

Power & Energy Society*

Cyber-Physical Testbed: Distributed Volt Var Control in Distribution Systems

Test-bed architecture for distributed voltage control

Distributed Volt-Watt Control in Distribution Systems

OPTDIST-VWC: Each DER controller for a given node j ($j \in \mathcal{N}$) follows four different steps at time t: Step 1 (Measurement): Measure local voltages at all the

Step 1 (Measurement): Measure local voltages at all the available phases $v_j(t)$, and active power maximum power point $p_j^{mpp}(t)$.

Step 2 (Calculating): Calculate, $\hat{p}_j(t+1), \xi_j(t+1), \bar{\lambda}_j(t+1), \underline{\lambda}_j(t+1), \underline{\lambda}_j(t+1)$, using:

$$\hat{p}_{j}(t+1) = \hat{p}_{j}(t) - \alpha \left\{ \left(\overline{\lambda}_{j}(t) - \underline{\lambda}_{j}(t) \right) + \sum_{\forall i \in \mathcal{N}_{j}} \left[\overline{Z}^{P} \right]_{ji}^{-1} \left[f_{i}'(\hat{p}_{i}(t)) + \operatorname{ST}_{-cp_{j}^{mpp}(t)}^{0}\left(\xi_{i}(t) + c\hat{p}_{i}(t)\right) \right] \right\}$$
(9a)

$$\xi_{j}(t+1) = \xi_{j}(t) + \beta \frac{\operatorname{ST}_{-cp_{i}^{mpp}(t)}^{0}\left(\xi_{j}(t) + c\hat{p}_{j}(t)\right) - \xi_{j}(t)}{c}$$
(9b)

$$\overline{\lambda}_{j}(t+1) = \overline{\lambda}_{j}(t) + \gamma \left[\left(v_{j}^{meas}(t) - \overline{v_{j}} \right) \right]^{+}$$
(9c)

$$\underline{\lambda}_{j}(t+1) = \underline{\lambda}_{j}(t) + \gamma \left[\left(\underline{v}_{j} - v_{j}^{meas}(t) \right) \right]^{+}$$
(9d)

here, \mathcal{N}_j is the set of all neighbor nodes connected to node j $(\forall j \in \mathcal{N})$.

Step 3 (Active Power Set-Point Deployment): Active power maximum power point is calculated again, $p_j^{mpp}(t+1)$. Active power injection set-point at time t + 1 is calculated as

$$p_j^{inj}(t+1) = \left[p_j^{mpp}(t) + \left[\hat{p}_j(t+1) \right]_{-p_j^{mpp}(t)}^0 \right]_0^{p_j^{mpp}(t+1)}$$
(10)

Step 4 (Communication): Values $f'_j(\hat{p}_j(t+1)) + ST^0_{-cp_j^{mpp}(t+1)}(\xi_j(t+1) + c\hat{p}_j(t+1))$ are communicated to neighboring DER nodes.

Increasing adverse events and integration of distributed energy resources results in higher number of state and control variables and requires scalable and resilient solutions

Metric is needed to compare alternative solutions to enable resilience

Grid monitoring and control requires distributed solutions for scalability

Distributed control and management is critical to enhance grid resiliency

Supporting computing infrastructure need to be scalable and fault-tolerant for resilient DER-rich electric grid and need to validated with the testbed

Thanks to all the students and collaborators. We acknowledge support from the DOE UI-ASSIST and NSF CPS