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Abstract—Due to thermal, electrical, mechanical, and chemical
stresses, line-post insulators in the power system may degrade
over time. The degradation process continuously gets exacerbated
by the above-mentioned factors. Therefore, condition monitoring
of line insulators must be frequently carried out. Optical cameras
are considered the most accurate among existing technologies
for detecting such defects. Computer vision techniques aided by
optical cameras could automate faulty insulator identification.
However, there is a limited size of the training data set obtained
from real-world optical camera images. In this paper, we propose
a generative approach to creating a massive amount of line-post
insulator fault images through Deep Convolutional Generative
Adversarial Networks (DCGAN). The additional training data
obtained from DCGAN-based approach is shown to improve the
accuracy of the insulator fault classification. In the case study, we
show that with an increasing number of synthetic images created
by DCGAN, the accuracy of the fault classification continuously
improves. The ability to classify true faulty insulators has
increased from 56% to 94%. The performance of the DCGAN-
based approach is also compared with the random oversampling
approach. The numerical results suggest that the DCGAN-based
approach has the advantage of detection accuracy and a lower
false positive rate.

Index Terms—Generative adversarial networks (GAN), Insu-
lator fault diagnostic, Synthetic data augmentation

I. INTRODUCTION

Line-post insulators are specifically engineered to insulate
transmission and distribution lines from the supporting struc-
tures, such as utility poles or towers, which are typically
grounded. These insulators are constructed from materials
that exhibit high dielectric strength, such as ceramic or glass
and are designed to withstand substantial electrical stresses.
However, these insulators are exposed to the environment and
constantly subjected to thermal, electrical, mechanical, and
chemical stresses, which can create degradation spots (such as
pin holes or cracks). Subsequently, depending on the natural
environment, these degradation spots expand (due to salt or
moisture introduction or electrical treeing following sustained
electrical stresses). Damage to these insulators can trigger
arcing or ground leakage, which is hazardous to civilians and
maintenance crews. Therefore, it is extremely important to
accurately identify the defective line-post insulators in advance
for the reliable operation of the power grid.

Multiple methods, including optical diagnostics [1], ultra-
sonic testing, infrared thermography [2], and leakage current
measurement exist for the identification of equipment failure
within the power infrastructure facilities. For a typical power
system such as the Korean power grid, we illustrate the
state-of-the-art performance of different inspection methods
in terms of their identification accuracy of faulty components.
As shown in Table I (see, [3] for details), optical diagnostics,
specifically visual inspection, provides the highest diagnostic
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yield for faulty equipment classifications including line-post
insulators and has been widely used in the field [4]. Another
observation from this table is only ∼ 5% faulty equipment
images are available from a pool of ∼ 1.5M diagnostic
images taken. While collecting such a large amount of optical
images and manual diagnosis could be physically demanding,
the use of unmanned aerial vehicles (UAV) [5], such as
drones, could simplify the image collection process. Recent
advances in computer vision technologies along with the use of
UAVs could largely simplify power system equipment failure
diagnostics, but, limited available images of faulty insulators
create a severe bottleneck in the model development for the
classification of faulty line-post insulators.

Classification is a sub-category under supervised learning
algorithms, where the classifier is provided with labeled data
sets to understand the latent features. There are multiple
challenges when there is skewness in the available data set
[6], some of them are: (i) the classifier may not be able
to generalize patterns within certain modes, (ii) it may be
difficult to accurately identify the decision boundary. One
of the traditional approaches for reducing the skewness in
the available data set is to use oversampling techniques [7].
This method involves duplicating samples from the minority
class (for example, random duplication as discussed in [8]),
and reducing the number of samples drawn from majority
classes. While this method artificially increases the training
samples, its major drawback is that the oversampling can lead
to overfitting, particularly when the generated data closely
resembles the original data. Another alternative contrary to
this approach could be the use of generative approaches, such
as the Generative Adversarial Network (GAN) [9]. Instead of
duplicating existing samples, GAN can generate diverse sam-
ples from scratch, tremendously improving the performance
of artificial intelligence-based classifiers.

Given the described problem of identifying faulted line-post
insulators based on images, one needs to use convolutional
layers to understand spatial dependencies, which can be one of
the reasons behind the use of Deep Convolutional Generative
Adversarial Network (DCGAN) [10] for augmenting existing
image database with synthetic images of defective insulators.
The contribution of this paper is, therefore, two-fold:

i. This paper demonstrates how GAN-based approaches
could improve the quality of data classification in the
context of equipment degradation. As a use case, we
focus on classifying faulted line-post insulators.

ii. This paper introduces a DCGAN-based approach to cre-
ating synthetic images of line post-insulator faults and
compares the impact of changing data-set sample sizes.

The rest of the paper is organized as follows. Section II,
provides a rough overview of DCGAN and how it could
be utilized for generating realistic faulty images of line-post
insulators. Section III describes the ResNet-based classifica-
tion model and some parametric analysis to demonstrate how
synthetic images are assisting the classifier. A comparison
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TABLE I
IDENTIFYING EQUIPMENT FAILURE STATISTICS THROUGH DIVERSE METHODOLOGIES IN ACTUAL POWER INFRASTRUCTURE FACILITIES

hhhhhhhhhhhhhhInspection methods

Power facilities Total number
of diagnosis

Classified faulty equipments Total number
of fault

Faulty Equipment
Detection

Success Rate [%]Insulator Cut out switch
/ Lightning arresters Transformer Switch Others

Thermal image 5,249,659 5,792 11,953 504 593 9,404 28,246 0.54
Ultrasonic 3.776,685 10,605 4,313 335 1,058 4,506 20,817 0.55

Optical 1,648,544 38,523 35,351 1,547 596 18,087 94,104 5.71
Others 452,007 969 685 9 1,009 495 3,167 0.70

with random oversampling-based data augmentation is also
presented. Section IV concludes this paper.

II. USES OF GAN IN GENERATING SYNTHETIC IMAGES

In this section, we present the problem formulation of GAN-
based synthetic image creation for line-post faults.

A. Generative Adversarial Networks (GAN) Overview

Fig. 1. Synthetic data generation using GAN

The GAN framework aims to learn the distribution of latent
variables in the example data set and try to capture such distri-
bution in the generated data. A detailed overview of the GAN-
based architectures is described in [11], [12]. As discussed in
the existing literature, GAN consists of a generator, G, and a
discriminator, D, both of which are typically neural networks
based on multi-layer perceptrons (MLPs). As shown in Fig.
1, the generator model aims to develop realistic data sets
from random noises, and the discriminator tends to classify
images into real and synthetic ones. Here, as shown in (1),
the generator and the discriminator play a min-max game,
which is based on binary cross entropy (BCE) loss. Suppose
pz is the noise distribution, then the generator, G(z, θg), a
differentiable function, maps noise space (or latent vector)
(z) to data space with the parameter, θg . The discriminator,
D(x, θd), is a scalar with the model parameter θd, which
calculates the probability with which the input samples (x)
are from the original database. Therefore, the generator is
aimed to minimize the expected log of (1−D(G(z)), which
calculates how far ahead are the probability distributions of
true and generated data. The discriminator acts as a classifier
to maximize that both real and synthetic samples are assigned
correct labels1. Consequently, both generators and discrimi-
nators receive the gradient of the associated loss function for
learning the underlying distribution. The learning completes at
a saddle point where the objective function, V (D,G), reaches
a maximum with respect to the discriminator and the minima
with respect to the discriminator — a Nash equilibrium.

min
G

max
D

V (D,G) = Ex∼pdata [logD(x)]

+Ez∼pz [log(1−D(G(z)))]
(1)

1GAN does not require the input data set to be labeled.

Therefore, GANs aim to capture the hidden distribution of
latent variables within the input data and their nonlinear, high-
dimensional cross-dependencies. Non-linear activation func-
tions within the generator and discriminator MLPs help encap-
sulate these hidden non-linearities. The non-linear property of
the BCE-loss function is able to emphasize misclassification.
Given the underlying non-convex optimization problem, GANs
do not always have a unique solution, and based on the chosen
different initialization and hyperparameters, the solution may
get stuck at a local optimum. Furthermore, the optimal solution
of a GAN corresponds to the saddle point. Secondly, the use of
gradients in learning creates a condition, especially during the
initial part of the training, where the generator fails to capture
the distribution of latent variables, and the discriminator marks
all the generated data set as synthesized. Or, the generator
produces a similar set of data, which is widely known as mode
collapse.

B. Using DCGAN for Generating Artificial Images

Despite these challenges, GANs, being a powerful gener-
ative model, has found widespread application in computer
vision and image processing, generating sequential data set,
etc. Contrary to typical data sets, image data (in the current
context) contains spatial relationships and convolutional op-
eration helps in capturing these relationships [13]. Typically,
convolutional neural networks (CNNs) consist of a set of
filters, also known as kernels or feature detectors, that slide
over the input image to perform convolutions and extract
relevant features (refer to [13] for a detailed treatment). The
length by which the kernel slides is known as the stride length.
In Fig. 2, the input image is of size 5×5, the kernel is of size
3×3, and the stride length is 1. Following the convolution
layer, the CNN also includes an activation function layer
(introducing nonlinearity into the network) and a pooling layer
(a downsampling operation that reduces the dimensionality of
the feature map). Therefore, the convolution and activation part
of the neural network is carried out using neural networks,
and the objective would be to learn these kernels for better
extraction of features. Once the features are extracted, these
feature sets are passed through a fully connected layer for
classification.

A CNN consists of multiple of these kernels/filter layers,
aiming to capture all of the complex feature sets, and the
resulting output feature map preserves spatial relationships.
A typical CNN architecture is given in Fig. 3:

Consequently, the majority of the GANs that are devel-
oped to work on image data, such as Conditional GAN,
DCGAN, and CycleGAN, utilize a convolutional layer because
of their effectiveness in understanding spatial dependencies
and capturing local patterns. Here, our focus will be on the
use of DCGAN for generating synthetic images. Originally
introduced in [9], DCGAN is an extension of the original
GAN architecture, where the generator and discriminator are
modified with convolutional layers (see Fig. 4), where, as



3

Fig. 2. Sample convolutional layer for a typical gray-scale image using a
3×3 kernal

Fig. 3. Typical CNN design

discussed, the kernels of both generators and discriminators are
required to be trained suitably. One of the major issues of using
CNN in image classification is the use of a fully connected
layer in the output, where, given the spatial relationship, the re-
searchers often argue for the use of partially connected layers.
Secondly, while the ReLU activation function is typically used
in CNN, it becomes inactive when the inputs become negative,
significantly affecting the learning during the training process.

Fig. 4. Generating synthetic defected line post insulator with DCGAN

To circumvent the same, DCGAN uses the leakey ReLu
activation function in its convolution layer (see the comparison
in Fig. 5). Thirdly, pooling in the convolution layer is replaced
by strided convolution (stride length greater than 1). DCGAN

uses other techniques, such as batch normalization, which in-
creases the stability of the training process quite significantly,
as well as partially connected layers.

Fig. 5. ReLU vs. Leakey ReLU: Architectural Difference

Like other GAN frameworks, DCGAN also has a gener-
ator and a discriminator, which we will discuss in detail in
the following subsection considering line-post insulator fault
diagnostic as a use-case.

C. Generating Synthetic Image using DCGAN
The training process of DCGAN typically consists of the

following steps:
1) Data preparation: Although the input images in CNNs

are not typically downsampled, they are downsampled as a part
of DCGAN. This is to ensure a balance between computational
efficiency, spatial resolution, and information preservation.
Here, all of the obtained images will be downsized to 64 × 64.
Fig. 6 depicts some of the actual images of a damaged line-
post insulator. Given the objective of the GAN-based generator
is to generate images of faulty insulators, in this research, 52
pre-labeled images of defective line-post insulators were used
for training the GAN.

Fig. 6. Real images of defected line post insulator

2) Generator and discriminator initialization: Like the
GAN framework, in the current context, DCGAN strives to
map randomly generated vectors into an image set consisting
of line-post insulators based on certain parameters θg (see the
overview on GAN, and Fig. 4 for the overall architecture of
DCGAN). Given the focuses are on images, we seek the help
of transposed convolution to map the random numbers into
the images. First, the random noise vector is projected through
a fully connected layer with learnable weights and reshaped
into a tensor of suitable dimensions and channels. The overall
process helps in applying transposed convolution2 sequentially
for upscaling the image. In this work, the size of the latent
vector (z) is chosen to be 43. DCGAN uses strided convolution
instead of pooling and batch normalization to stabilize the
training process. Leakey ReLU activation function is used to
capture the nonlinearity within the images while minimizing

2Transposed convolution operation is very similar to convolution operation,
where both involve input data and a learnable kernel. However, as opposed to
feature extraction, here, the objective is building the image based on features.

3Typically, this number should be more than one and less than the number
of test samples for training. In this problem, we have treated this variable as
a hyperparameter.
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the impacts, such as dead neurons and the ‘tanh’ activation
layer in the output to produce the synthesized image.

The discriminator is a typical CNN, designed to take 64×64
RGB-image as an input. The discriminator also utilizes strided
convolution instead of pooling and batch normalization to im-
prove stability. It utilizes the Leakey ReLU activation function
with a ‘sigmoid’-based output layer. All the weights in the
generator and discriminators are suitably initialized.

3) Adversarial training: DCGAN is trained in a process
where the generator and discriminator are trained together.
During training, the discriminator is trained on a batch of real
images from the data set and a batch of generated images
from the generator. The generator is a more complex process,
given that it has to learn all latent information within the real
samples. The training process in the DCGAN is classified
into epochs and iterations. The epochs refer to generators
producing a batch of synthetic images. Ideally, at the beginning
of each epoch, the generator produces synthetic images, and
the discriminator is trained to identify both synthetic and
real images for each mini-batches. Within a given epoch,
neural networks within generators and discriminators are up-
dated multiple times based on the determined gradient. Here,
the number of training epochs was 100. The objective is
to minimize the generator’s loss and improve its ability to
generate more realistic images. As the training progresses,
the generator learns to generate more realistic images, while
the discriminator becomes more accurate in distinguishing real
and synthetic images.

D. Synthetic results

Fig. 7. Generator and discriminator loss function across iterative training

As the training progresses, the model learns to generate
images that exhibit characteristics similar to real images,
and the discriminator becomes more adept at differentiating
between real and synthetic images. Fig. 7 shows a loss of
generator and discriminator during training. In the initial stages
of training, both the generator and discriminator losses are
usually high, as the model starts with random weights and
biases. The trend of the losses varies during the training
process. Initially, the discriminator loss decreases faster than
the generator loss as the discriminator becomes more accurate
at distinguishing between real and synthetic images. This can
result in the generator struggling to generate realistic images
and experiencing a higher loss. As the training continues,
the generator starts to improve its ability to synthesize more
realistic images, this leads to a decrease in the discriminator
loss. As the training progresses, the losses for the generator
and discriminator should converge to a relatively stable state.

Fig. 8. Evolution of Synthetic images of defected line post insulator generated
by DCGAN across multiple epochs

The evolution of synthetically generated faulty insulator im-
ages across multiple epochs is demonstrated in Fig. 8. Due to
the complex nature of image generation, the generated images
after the final epoch may still exhibit some imperfections,
commonly referred to as “noise,” in the background or other
regions. The generated images from the designed DCGAN can
also have a grainy background, but the images so synthesized
can still be considered relatively valid, as they demonstrate
a resemblance to real images. The noise in the background
can be interpreted as a result of the model’s attempt to learn
and reproduce the intricate details and patterns present in real
images. Note that, the discriminator being a classifier, it learns
to selectively ignore the ‘graininess’ and becomes better and
better at identifying synthetic images. One possible way to
tackle this challenge could be to add additional noise with the
true images for training.

III. AN ENHANCED CLASSIFICATION MODEL USING
SYNTHETIC IMAGES: A CASE STUDY

The effectiveness of the synthetic images in the line-post
insulator fault diagnostic model — enabling true power system
automation through computer vision — is demonstrated in this
section. Here, we have used ResNet [14] model, a CNN, to
provide us with the desired computer vision. In this section,
first, we provide a brief introduction on ResNet. Secondly, a
description of the utilized data set and the metrics utilized
for understanding model performances are elaborated. Sub-
sequently, we will provide a comparative analysis of model
performance through the case studies:

Case A: How the model learns to identify the false positives
to true negatives with the addition of more synthetic images
using DCGAN, mitigating the skewness of the ResNet training
data.
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Case B: How the model learns to identify the false positives
to true negatives with the addition of more synthetic images
using DCGAN, when there is no skewness in the ResNet
training data, and compare the performance of the added data
with an example oversampling technique (such as random
oversampling [8]).

A. ResNet: An Image Classification Model
Given that deep neural networks consist of multiple layers,

each of which is required to be updated based on the calculated
gradient, they suffer from issues such as vanishing gradient,
where the gradient of the loss function becomes close to zero
and the neural network cannot update itself. The architectural
change introduced by ResNet compared to a typical CNN
model is that instead of directly learning the mapping of the
relationships among the images and objects, it uses a residual
layer (output of one layer is taken and subsequently added
to the output of another layer ahead — also known as the
skip connection. See Fig. 9). ResNet comes with different
architectures based on the number of layers, however, given the
effectiveness, and computational efficiency, we have decided
to use ResNet-18 for classifying the condition of line-post
insulators. We have used cross entropy as a loss function and
a Stochastic Gradient Descent (SGD) technique for training
the neural network.

Fig. 9. Residual layer in ResNet.

B. Data sets, Parameter Setting and Comparison Metric
Testing Data: Our data set consists of 52 damaged pre-

labeled line-post insulator images and 223 normal images from
the field. Based on a typical 7:3 ratio, we have separated out 16
damaged and 66 undamaged insulators beforehand for testing.
We will be using the same data sets across all the case-study
to ensure comparability of the results across multiple models
(note that we will not be utilizing synthetic images for testing).
In the training process, the learning rate is 0.001, and the
number of epochs is 6.

Training Data: Five sub-cases are considered as a part of
Case A, where multiple images of synthetically generated
damaged insulators were added to the data set, resulting in
different skewness ratios as presented in Table II. Here we
ensured that the synthetic images were retained across cases,
i.e., for data set 3, we reused 27 synthesized images from
data set 2, and 37 DCGAN-generated images were also added,
making a total of 64 synthetic images as a part of the data set
3. Such a treatment would allow us to specifically see the
impact of added synthetic images.

Five sub-cases are considered as a part of Case B, where
we randomly selected 36 samples (without repetition) from
156 normal insulator images. In the subsequent sub-cases,
for the faulty insulators, we have selected DCGAN-generated
synthetic images, or, based on random over-sampling. For the
normal insulator images, we have added new images from the
real database while ensuring that the skewness always remains
1:1.

TABLE II
DATA SET USED FOR CLASSIFICATION WITH RESNET

Normal Fault (Actual + Synthetic) Skewness Ratio
Data set 1 156 36 + 0 1:0.2
Data set 2 156 36 + 27 1:0.4
Data set 3 156 36 + 64 1:0.6
Data set 4 156 36 + 91 1:0.8
Data set 5 156 36 + 120 1:1

Fig. 10. Metric to compare the overall performance of ResNet models

Comparison Metric: The performance of the classification
model was evaluated using the confusion matrix and the
receiver operating characteristics (ROC) curves. Typically four
possible results from a binary classification algorithm are
possible: true-positive (TP), true-negative (TN), false-positive
(FP), and false-negative (FN), and the confusion matrix cap-
tures the same. While, Accuracy (TP+TN)/(TP+TN+FP+FN),
Sensitivity TP/(TP+FN), and Specificity TN/(TN+FP) are typ-
ical statistical indicators directly calculated from the confusion
matrix. These are explained using Fig. 10. Typically, overall
accuracy can identify how good the classifier is at classifying
the TP and TN images, but it may not be able to identify
individual performance. The sensitivity and specificity are able
to capture the same.

C. Numerical Results
Based on the synthesized cases, we have divided this

subsection into two parts:
Case A: As a part of this case, we would like to observe

how increasingly added GAN-generated synthetic images and
consequent reduction in skewness impacts the overall perfor-
mance of the classifier. Given that our test samples are true
data sets, the impacts of synthetic data on test results are
eliminated. The challenges with skewed data sets are imminent
in Fig. 11, where, it can be seen that the classifier is able to
classify normal insulators with 100% accuracy but struggles
with defective insulators. Here, multiple defective insulators
are classified as non-defective (False positive). We can observe
that despite the “graininess” of the GAN-generated synthetic
images and their use in training, the classification accuracy
increases as the skewness continues to decrease. It can be seen
in Fig. 12, increasing accuracy is not monotonically increasing,
specifically for data set 3. However, by construction, we reused
synthetic images across data sets, which implies that DCGAN
can synthesize poor-quality images, which, when coupled with
high skewness and low sample size for training, even with the
addition of synthetic images, can result in a reduction in the
classification accuracy. As shown in Table III, the discrepancy
is visible across all the metrics.

Nevertheless, following the addition of DCGAN-
synthesized images, the specificity increased from 0.56
to 0.94, and overall accuracy from 91.6% to 98.8%.

Case B: Although the datasets are quite balanced, the
impacts of limited data available for training are visible in
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TABLE III
DIFFERENCES IN MODEL PERFORMANCE BASED ON DATA SET

Data set Sensitivity Specificity Overall Accuracy
(%)

Data set 1 1.00 0.56 91.6
Data set 2 1.00 0.69 93.9
Data set 3 1.00 0.63 92.8
Data set 4 1.00 0.88 97.6
Data set 5 1.00 0.94 98.8

Fig. 11. Confusion matrix of the test data with models based on skewed data

Fig. 12. Trends in specificity and overall accuracy

Fig. 13. Note that the metrics with DCGAN-generated and
oversampling-based results are the same when we have used
36 normal and 36 defective images from training, and by
construction, similar sets of data were used in both subcases.
We also observe that with random oversampling, one may risk
overfitting, and therefore, the metrics are lower in the case of
random oversampling. We can also observe the sensitivity to
be 100% across the board.

IV. CONCLUSION

This paper presents an end-to-end framework for improving
the accuracy of line-post insulator fault classification through
generative approaches to creating synthetic images. In par-
ticular, the focus would be the development of a ResNet-18
architecture-based machine vision algorithm utilizing UAV-
captured images. However, insufficient insulator data availabil-
ity and the underlying skewness within the available data make
the development of the machine vision algorithm challenging,
and in this regard, we sought the help of deep Convolutional
Generative Adversarial Networks (DCGAN) to generate syn-
thetic images. In this regard, we described the use of DCGAN

Fig. 13. Comparative metric-wise trends when data set are not skewed

in power distribution system automation and the training pro-
cess for synthetic data generation. Following the training of the
ResNet-18 architecture-based classifier, we observed how the
introduction of the synthetic data increases the performance of
the classifier. We also observed the performance improvement
for the DCGAN-based image synthesizer compared to the
random oversampling algorithm. We expect that this paper
would help power engineers to understand the suitability of
using generative approaches for power engineering applica-
tions. Given the crack formation, damages in the insulator are
governed by underlying physical laws, it would be of interest
to incorporate them while developing the GAN model as a
part of future work.
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