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Abstract—Traditionally, centralized approaches have predom-
inantly been used for the power system operation and control.
With increasing penetration of small-scale distributed energy
resources (DERs) in the distribution network, especially inde-
pendently owned renewable resources, distributed algorithms
can serve as a potential alternative for improving scalability,
resiliency and addressing privacy concerns. However, the com-
plexity of distributed algorithms significantly increases with the
integration of the legacy devices, the operation of which depend
on discrete control variables. This paper aims to provide a review
of the distributed optimization algorithms incorporating discrete
control variables for the power distribution system. While the
research in this domain is still at its nascence, an extensive
comparison of the approaches in the literature for applying
quadratic penalty, branch and bound,ordinal optimization and
proximal operator to handle discrete variables in the framework
of ADMM and dual decomposition have been addressed. Future
research direction in this field have been also provided.

Index Terms—Distributed Optimization, Discrete Optimiza-
tion, Distribution Power System, DERs.

I. INTRODUCTION

W ITH increasing penetration of Distributed Energy Re-
sources (DERs), scale of decision variables in power

system operation have significantly increased. With expanding
high-performance sensor deployment, data acquisition, and
processing technology, sharing measurements to a single lo-
cation raises scalability, security and privacy concerns and
increased cyber vulnerabilities. To circumvent these challenges
and enhance cyber resiliency, distributed approaches exchange
limited information to only a subset of other agents. Further-
more, distributed techniques facilitate reorganizing capabilities
in the advent of natural disasters or cyber-attacks, providing
much-needed self-healing capabilities.

Needed efficiency for the power distribution system op-
eration has led to the development of several applications
in the advanced distribution management system (ADMS).
Therefore, notably, many of the applications (e.g., volt-var
optimization (VVO), optimal outage management (OMS),
distribution service restoration (DSR) of the PDS) deployed
within the ADMS utilize various extensions of the Optimal
Power Flow (OPF) problem. In addition to the inverter-
based resources, these OPF problems need to account for
conventional On-load Tap changer (OLTC), switching position
of capacitor banks (CB), voltage regulators (VR), reclosers,
sectionalizers, and various other switches, the operations of
which are not in continuous domain. The requisite non-linear
power flow equations, representing the underlying physics of
the power system along with discrete control variables lead to
the OPF problem becoming NP-hard [1] solving which, even
in a centralized setting, can be extremely difficult.
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A multitude of solution frameworks is available in the liter-
ature for solving these OPF problems, especially for the PDS.
Due to the challenges of solving the NP-hard problem, several
relaxations in the power flow equations have been introduced
[2]. The authors of [3] propose a mixed-integer quadratic
programming deterministic framework to optimally control
OLTC, CB, and VRs for VVO. The problem utilizes advanced
branch and cut techniques and linearizes power flow equations
by considering load to be voltage-dependent as in [4]. In [1],
Mixed Integer Second Order Cone Programming (MISOCP)
has been implemented in order to combine reactive power
optimization with network reconfiguration to minimize power
losses and maintain voltage profile in three-phase PDS. In [5],
discreteness of VR operations is modeled through an SDP
relaxed Branch Flow Model [6], with a generalized Benders
Decomposition. Furthermore, [7] proposes a modified Interior
point method (IPM) including quadratic penalty terms for
non-integer values for discrete decision variables. Notably, all
these approaches rely on a centralized optimizer for decision-
making.

Typically, distributed algorithms rely on the decomposabil-
ity of centralized problem formulation or the model itself. The
radiality of the PDS helps in achieving the same without a
significant increment in computational burden. In this regard,
a fully distributed feedback based Volt-Var control algorithm
is developed in [8] utilizing augmented Lagrangian Multiplier
theory and primal-dual gradients. In [9], the service restoration
problem has been solved via ADMM considering DERs and
micro-turbines in the PDS. A multi-agent scheme for con-
trolling the DERs to provide voltage support is proposed in
[10]. However, these approaches remain silent on optimality
guarantee with the introduction of discrete variables.

Solving an OPF with MINLP while guaranteeing optimality
can be extremely challenging, especially when all the data is
not available at a central location for decision-making. Dis-
tributed approaches involving discrete variables are relatively
newer, especially in the power system domain. Therefore, to
reap the benefits of the distributed methods, it is imperative to
analyze the state-of-the-art, especially in the PDS literature.
There have been reviews [11], [12] inspecting the existing
decentralized/distributed approaches in power system opti-
mization, but these provide no commentary on the convergence
of the algorithms in the presence of discrete variables.

This paper aims to bridge the research gap in distribution
optimization with discrete variables by critically reviewing
the key literature utilizing mathematical programming tech-
niques that account for discrete control variables in the PDS.
Quadratic penalty, branch and bound, ordinal optimization
and proximal operator method to handle discrete variables
in ADMM and dual decomposition have been discussed. We
observe that framework encompassing all different kinds of
discrete variables are missing in existing literature. Another
challenge will be fine-tuning these algorithms in improving the
overall efficiency of the optimization algorithm. Comparative
analysis of these literature helps in identifying future research
directions for distributed OPF with discrete variables.978-1-6654-9921-7/22/$31.00 ©2022 IEEE
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II. DISTRIBUTED OPTIMIZATION AND OPF IN THE PDS
A. Generic ACOPF Formulation

A typical AC optimal Power Flow (ACOPF) problem for
the PDS can have multiple forms such as minimization of
system losses, voltage or frequency deviation, active power
curtailment cost, conservation voltage reduction or service
restoration. A generalized constrained optimization problem
is shown in (1), where, the objective is to minimize cost f(x)
over decision variable set x, satisfying the set of equality and
inequality constraints g(x) and h(x) respectively:

min
x

f(x), s.t., g(x) = 0, h(x) ⩽ 0 (1)

A typical Volt-Var optimization problem as a representative
ACOPF minimizing the weighted voltage deviations along
the distribution feeder has been represented in (2). Typical
constraints include nonlinear power flow equations (2c) and
power system operational constraints (2b).
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Here, Vi, Vref , Sg
i , Sd

i , Sij , Yi,j identify, network level volt-
ages, voltage references, apparent power generation, apparent
power demand, line flows and line admittance respectively.

The non-convexity imposed by nonlinear AC power flow
equations necessitates implementation of suitable approxi-
mations or relaxations. The main types of relaxations that
convexify the ACOPF problem can be categorized to: 1) Semi-
Definite Programming, 2) Second-Order Cone Programming
and 3) The Linear Relaxation [2]. Furthermore, with the
introduction of legacy devices with discrete control steps
(3),(4), the problem becomes a mixed integer type problem.∑
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Here, si, Y C
i identify, operational status of capacitor banks,

capacitive admittance, respectively. Y s
i,j , Tij represent, admit-

tance of tap changing transformers, and complex tap positions,
the operation of which are in discrete steps.

To solve the OPF problem, a wide variation of algorithms
exist for centrally handling continuous and discrete variables.
We observe that, distributed approaches evolve mostly from
modification of centralized algorithms with suitable decompo-
sition and coordination. In the following section we describe
some of the algorithms that would facilitate detailed discussion
in the next section:

B. Approaches for Centralized OPF
1) Interior point Method (IPM): IPM introduces non-

negative slack variables to convert the inequality constraints
in (1) to ht(x) + St = 0. The sum of the logarithms of all
the slack variables forms a ‘log barrier’ and is added to the
objective function with a weighting parameter µ to ensure the
non-negativity of slack variables. The objective function in
(1) is then reformulated as (5) followed by the corresponding
KKT conditions(6).In each iteration, The KKT conditions are
solved via Newton’s Method and the Lagrange multipliers

λg and λh, the barrier parameter µ, variables x and S are
updated accordingly until convergence is achieved.

min f(x)− µ
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g(x) = 0 (6b)
ht(x) + St = 0 (6c)

diag(S)γ − µI#ineq = 0 (6d)

2) Sequential Quadratic Programming (SQP): SQP algo-
rithms construct quadratic functions from the generic OPF
model (1) and computes search direction d(k) for a given
iteration, k, by solving the following equations with modified
constraints as (8)
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where L is the Lagrangian with multipliers λg and λh; ∇
and ∇2

xx denote the gradient and Hessian, respectively, with
respect to x. In each iteration the primal variables are updated
as x(k + 1) = x(k) + d(k).When the Hessian is difficult
to compute, SQP algorithms often employ so called “quasi-
Newton” techniques [13].

3) Branch and Bound: An useful strategy to solve combina-
torial optimization problem is the Branch and Bound Method
(BBM) [14], which is utilized alongside other algorithms
for solving mixed integer problems. The BBM iteratively
builds a search tree of sub-problems by generating children
nodes through partitioning the solution space (branching). It
stores a feasible solution globally and updates it whenever
the algorithm finds a better solution from evaluating other
sub-problems from the set of unexplored problems in further
iterations. Regions yielding to suboptimal solutions are pruned
from the search space (bounding). Once all sub-problems have
been explored the best solution is returned which is proven to
be the optimal solution.

C. Approaches for Distributed OPF
In constrained optimization, the proposed distributed tech-

niques in literature can be classified into primal [15], dual [16],
or primal-dual [17] based relying on the methodologies used
to account for consistency constraints. Here we will review a
few of the relevant distributed optimization techniques:

1) Dual Decomposition: If the objective function is sepa-
rable, the problem in (1) can be reformulated as:

min
x

N∑
i=1

fi(xi), s.t.

N∑
i=1

Aixi = b (9)

xk+1
i := argmin

xi

Li(xi, λ
k) (10a)

λk+1 := λk + αk
( N∑
i=1

(Aix
k+1
i )− b

)
(10b)

This equation can be decomposed in such a way that, each
of the controllers solves its Lagrangian Li(xi, λ) := fi(xi) +
λT

(
Aixi− (1/N)b

)
and the primal and dual variables will be

iteratively updated as (10).



2) Alternating Direction Method of Multipliers (ADMM):
ADMM is one of the widespread distributed approaches which
decomposes the problem through dual descent and incorpo-
rates method of multipliers for better convergence guarantee
[18]. This dual based algorithm reformulates the optimization
problem as follows:

min f(x) + g(z), s.t., Ax+Bz = c (11)

The augmented Lagrangian is formed by including the
quadratic penalty term corresponding to the equality constraint
for improving the convergence properties,

Lρ(x, z, λ) = f(x) + g(z) +

λT (Ax+Bz − c) + (ρ/2) ∥Ax+Bz − c∥22 (12)

The x and z minimization steps are conducted by separate
agents whereas dual variables are updated centrally as,

xk+1 := argminLρ(x, z
k, λk) (13a)

zk+1 := argminLρ(x
k+1, z, λk) (13b)

λk+1 := λk + ρ(Axk+1 +Bzk+1 − c) (13c)

One approach for avoiding the central controller and making
the algorithm completely distributed is introducing global
variables (sj) associated with the local variables (xj) and
create a bipartite graph between neighboring agents where
each edge represents a consensus constraint (xj = sj). So
neighboring agents share information with each other to mu-
tually converge the local variables towards the global variables.
The augmented Lagrange function is built as (14) having y as
the Lagrange multiplier associated with consensus constraints
and Na

B indicates all the boundary variables of agent a.

Lρ(x, s, y) =
∑
a∈A

[fa(x
a) +

∑
j∈Na

B

yTa,j(x
a
j − sj) + (ρ/2)

∑
j∈Na

B

∥∥xa
j − sj

∥∥2] (14)

3) Analytical Target Cascading (ATC): ATC method de-
composes the Optimization problem with large number of
variables into hierarchies of subsystems and each subsystem
co-ordinates with its hierarchy elements only for achieving the
global convergence. Each element in the hierarchy sets target
for its children subsystems in the lower level in preparation
of obtaining targets passed by parent subsystem in the upper
level. Each controller Mij at level i and subsystem j solves
the following problem,

min
x̄ij

[
fij(x̄ij) + Π(tij − rij)

cij∑
n=1

Π(t(i+1)kn
− r(i+1)kn

)
]

s.t. gij(x̄ij) = 0; hij(x̄ij) ≤ 0

where x̄ij =
[
xij , t(i+1)k1

, ..., t(i+1)kcij

]
∈ Rq;

and rij = aij(x̄ij) (15)

here, all local variables to element j at level i is stored in xij ,
For any common variable between an element and its parent, a
target (tij)-response (rij) pair is created. Target is decided by
the parent and response is calculated from that element’s anal-
ysis function aij as in rij = aij(xij , t(i+1)k1, ..., t(i+1)kcij).
The deviation function is added to the objective function to
match the target and response of each element until conver-
gence.

The strategies for integrating aforementioned distributed
approaches with traditional optimization solvers with special
modification for handling discrete variables as reported in the
literature will be discussed in the next section in detail.

III. DISTRIBUTED APPROACHES WITH DISCRETE
VARIABLES

In each of these approaches, the power system is divided
into multiple areas with own controllers. Each controllers
coordinate only with controllers of neighbouring areas.

A. ADMM with Extended Interior Point Method
The developed distributed algorithm stems from its cen-

tralized counterpart [7] which extends the IPM by adding
quadratic terms to the objective function that penalizes the
function when the discrete decision variables get other values
rather than its nearest rounded off integers. The addition
of the penalty term needs to be harmonized so to avoid
unnecessary fluctuation in primal and dual residuals. The
penalty function for all discrete variables are added to the
augmented Lagrangian as (16) where γj is the penalty factor
corresponding to discrete variable xj and xjb is determined by
rounding the computed value off to its nearest integer. Notably,
before such an addition, the discrete variables were relaxed as
continuous.

L
′
= L +

p∑
j=1

1

2
γj(xj − xjb)

2 (16)

The authors of [19] broadens the aforementioned technique
to a distributed algorithm by utilizing ADMM. Auxiliary
variables corresponding to boundary node voltages at two ends
of a tie line are introduced for ADMM consensus and the
optimization problem is reformulated as in (14). The requisite
algorithm is provided in Algo. 1:

Algorithm 1: ADMM with EIPM
Data: Voltage & Power Flow Measurements from PDS
Result: Optimum Solution for DER Generation and

tap position of OLTC, CB
Set all auxiliary variables to unity;
do /* Outer loop iterations */

Solve local optimization problems through EIPM;
Add integer penalty terms when needed;
do /* Inner loop iterations */

Obtain solutions for primal and auxiliary
variables through local computation from
local and shared variables and consensus
constraints ;

Send boundary variables to neighbors;
Update dual variables corresponding to
equality, inequality and consensus constraints;

while Repeated solutions of ADMM iterations
converge?[Check];

Update primal and dual variables;
Calculate primal and dual residuals;

while Repeated solutions of local EIPM method
converge?[Check];

B. Incremental ADMM with Extended Interior Point Method
Alternatively, the optimization problem of Approach A

is reshaped in [19] by perturbing the KKT conditions for
incremental values of variables instead. Linearization gives
rise to following set of equations,

min
∆x,∆s

∑
a∈A

(
1

2
(∆xa)THa∆xa − (L a

xa)T∆xa)

)
(17a)

s.t. Ja∆xa = L a
λa
, a ∈ A, (∆λ) (17b)

∆xa
j −∆sj = 0,∨j ∈ Na

B ,∨a ∈ A, (∆y) (17c)



Here, Ja is the Jacobian matrix corresponding to the equal-
ity constraints, Ha denotes the Hessian matrix, Lλ and Lx
are the residual vectors of KKT conditions. It can be observed
that, the optimization sub problem is simplified to a quadratic
problem (QP) in terms of local variable increments which
only needs incremental boundary variables to be shared among
neighbors. Thus the problem becomes an Incremental Oriented
(IO) ADMM. The problem is solved in the same manner as
previous IPM. The results in [19] show that, the IO-ADMM
improves the convergence and quality of solution significantly.

C. ADMM with Branch and Bound
The method in [20] utilizes ADMM in conjunction with

BBM to account for the discrete tap positions of OLTC in a
distributed manner. Since ADMM convergence is only guar-
anteed for convex problems [18], angle and SOCP relaxations
are utilized. Initially, discrete variables are linearly relaxed and
global variables are introduced for the boundary variables to
converge through consensus constraints (14). Once the ADMM
converges, BBM is applied to the discrete variables giving rise
to 2n candidate solutions, each associated with the tap changer
position; which is solved using B&B method, as discussed in
Algo. 2.

Algorithm 2: ADMM with Branch and Bound
Data: Solution with continuous relaxation
Result: Optimum Solution for tap position of OLTC
Initialize objective function to ∞;
while unretrieved branch ̸= ∅ do

Initialize boundary variables as measured data;
Set Lagrange Multipliers to zero;
do /* ADMM iterations */

Solve the minimization problem considering
branch constraints;

if Solution not feasible? then
Fetch nearest unretrieved branch, and start

over;
end
Update global variables, Lagrangian

multipliers, residuals and penalty parameters;
Exchange boundary variables and residuals to

adjacent regions;
while Residuals Converge?;
Exchange boundary voltages and objective

functions ;
if Cost improved? then

Add a cut to upper limit of the objective ;
end
Calculate and exchange tap positions among

adjacent regions;
if Tap positions are integers? then

Reconstruct branches considering voltage
related constraints;

else
end

D. Dual Decomposition with SQP implementing DPQN and
Ordinal Optimization (OO)

Algorithm presented in [21] decomposes the entire opti-
mization problem into subsystems each solving its local min-
imization problem by employing dual pseudo quasi Newton
(DPQN) method as part of SQP relaxing all the discrete
variables as continuous. The generic formulation of (7) is
suitably decomposed (18) where ∆x is the increment in
decision variable to be added in the next iteration,

min
∆xi∈Ωi

[∆xT
i ∇2

xi
fi∆xi +∇xif
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o
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T
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giTjb ∆xj
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Here, gib, λib and
o
gi,

o

λi represent the equality constraints
pertaining to boundary buses and local buses respectively.
Thus the original problem is decomposed and lagrange mul-
tipliers from only the neighboring buses (Ni) are needed
by any local controller. After the distributed solution with
continuous variables are found, OO strategy is implemented
via a root subsystem for selecting a sufficiently reasonable
combination. Coordination by root-system can be akin to
centralized algorithm. The surrogate model here is built based
on the sensitivity theory described in [22]. Overall algorithm
has been summarized in Algo. 3:

Algorithm 3: SQP with DPQN and OO
Data: Voltage & Power Flow measurements from PDS
Result: Optimum Solution for DER Generation and

tap position of OLTC, CB
Command from Root Subsystem: Solve the SQP

with DPQN method considering continuous relaxation
of the discrete variables:: Problem-Distributed;

Stage 1: Set variables which are already near a integer
value based on pre-defined threshold ;

Stage 2: Perform the sensitivity analysis as per [22] to
rank potential candidate solution set is separated ;

do
Stage 3: Solve Problem-Distributed based on

outcome of Stage 2 and determined initial
solution in Stage 1 ;

while Good Enough Solution Found?;

E. ADMM with Relax-Drive-Polish Algorithm
The work on [23] solves the DSR problem after an power

outage through network reconfiguration and load restoration
by proposing a heuristic relax-drive-polish algorithm in con-
junction with ADMM modified from [24]. PDS constraints
are linearized, and therefore, overall problem is mixed integer
convex-programming (MICP). For DSR, the discrete variables
are energization states of tie switches, buses and load pickup.
Another set of discrete variables arise from the topological
constraints to ensure radiality of the system. In this paper,

Algorithm 4: ADMM with Relax-Drive-Polish
Data: Voltage & Power Flow measurements from PDS
Result: Near Optimum Solution for Tie Switch status,

Bus status and Load pickup
Relax all binary variables; Start ADMM iterations.

Find a preliminary point for warm-start;
Drive the solution of binary variables to boolean

values by incorporating proximal operator and
regularization parameter instead of direct projection
for better convergence;

Fix the binding binary variables and finalize the
network configuration;

Polish the existing solution by another set of ADMM
iterations through a Mixed integer Solver. In this
stage, the bus energization states and load pickups are
finalized;

binding variables correspond to constraints that prevent the
clusters to decompose the problem in a complete distributed
way whereas other variables are called inner variables to each
cluster. The Algorithm can be summarized in Algo. 4.



F. ADMM with Projection Method
Strategy proposed in [25] is for DSR through network

reconfiguration and distributed generators set-point allocation
through combining ADMM with projection method. The
network is divided into clusters based on location of tie
switches, each cluster to be controlled by a local controller
which decides the operating status of the tie switches not
violating radiality constraints [26]. So, the discrete variables
are energization states of tie switches, and variables ensuring
radiality. The Algorithm can be summarized as follows:

Algorithm 5: ADMM with Projection Method
Data: Voltage & Power Flow measurements from PDS
Result: Near Optimum Solution for Tie Switch status

and Load pickup
Relax the global binary variables related to radiality
constraints;

Partition primal variables to two components, one
containing only continuous variables, another
containing mixed-integer;

do
Solve Sub-problem I through ADMM iterations for

continuous variables;
Solve relaxed sub-problem II considering solution

of Solve Sub-problem I and projecting the binary
variables to nearest boolean value;

Update Lagrange multipliers and share with
neighbors;

while Convergence?;

IV. DISCUSSIONS

We further compare and contrast the discussed approaches
corresponding to distributed algorithms involving discrete
variables in the PDS in Table I. Relaxation of the discrete
variables, and relaxation of AC power flow equation and
subsequent rounding seems to be mostly common. In this table
we discuss typical model used for determining the control
variables, the objective function considered, methods to solve
problem associated with discrete variables with distributed
optimization, necessary exchange of boundary variables, req-
uisite communication, decision variable considered as a part
of optimization problem, and observed pros and cons of
the algorithms. The comparison table is expected to provide
us with an insight of the path forward. We observe that
while these algorithms can account for discrete variables,
their scope of operation is limited, e.g., a typical algorithm
designed to determine optimal tap position may not be suitable
for determining optimal switching operation of the capacitor
banks. This is dependent upon how the algorithm handles
the discrete variables. We observe that some approaches
need more boundary information to be shared which may
increase the communication burden. Additionally, majority
of these approaches are first-order (they uses ADMM/Dual-
decomposition method).

Furthermore, all of these aforementioned techniques divide
the PDS into a number of areas for designing the area con-
trollers. Besides, we observe the absence of a standardized way
of incorporating different types of discrete variables, which
significantly limits the applicability of the existing approaches.
Notably, the ways to account for binary variables in distributed
optimization and control application is not limited to power
system domain, and have been an important field of research
in various other engineering applications giving rise to devel-
opments of diversified strategies. The work in [27] proposes a
technique of integrating ATC with BBM to solve the MINLP

problem in a hierarchical manner among multiple controllers.
BBM works as the outer loop whereas ATC performs the inner
loop iterations. The authors of [28] discusses on implementing
cutting planes to solve MILP problems in distributed manner.
To add, though we have emphasized the scope of this paper
within mathematical programming based approaches, devel-
opment of machine learning based decentralized techniques
in power system domain has also gained attention among
researchers in recent years [29], [30].

However, as it is well known, the power system has certain
unique properties, which could certainly be leveraged for
efficient controller development. It would be worth investigat-
ing whether a generic formulation encompassing typicality of
various controller devices is possible, or each of the controller
needs to be custom made. We also need to investigate how
we can increase the speed of computation without much
sacrifice on the solution quality. Also, future work can be
accomplished on making these algorithms robust to cyber and
communication uncertainties and failures.

V. CONCLUSIONS

In this work, a comprehensive literature review has been
conducted to identify existing methodologies to solve optimal
power flow problem involving discrete variable for a dis-
tributed optimization. We have provided a detailed discussions
to understand the underlying algorithm, and subsequently
compared all these algorithms across a set of parameters. We
observe that even with limited literature availability, there is
clearly a lack of available framework that encompasses all
different kinds of discrete variables. While we have noted the
existences of different kinds of algorithms in various other
areas, the challenges would be how these algorithms could be
fine-tuned to leverage some of the properties of the power
system, improving the overall efficiency of the distributed
optimization and control algorithm.
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