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Abstract

In recent years, power grids have seen a surge
in large cryptocurrency mining firms, with individual
consumption levels reaching 700MW. This study
examines the behavior of these firms in Texas,
focusing on how their consumption is influenced by
cryptocurrency conversion rates, electricity prices,
local weather, and other factors. We transform the
skewed electricity consumption data of these firms,
perform correlation analysis, and apply a seasonal
autoregressive moving average model for analysis.
Our findings reveal that, surprisingly, short-term
mining electricity consumption is not correlated with
cryptocurrency conversion rates. Instead, the primary
influencers are the temperature and electricity prices.
These firms also respond to system-wide demands as a
part of demand response mechanisms deployed by the
Electric Reliability Council of Texas (ERCOT). As the
scale of these firms is likely to surge in future years,
the developed electricity consumption model can be
used to generate public, synthetic datasets to understand
the overall impact on power grid. The developed
model could also lead to better pricing mechanisms to
effectively use the flexibility of these resources towards
improving power grid reliability.

Keywords: Demand Response, Econometric Model,
Large Flexible Cryptomining Loads, Electricity
Markets.

1. Introduction

As shown in Fig. 1, the Texas electric grid is facing
a rapid cryptocurrency mining data-center-driven load
growth and management challenge. The Electricity
Reliability Commission of Texas (ERCOT)—the market
operator in charge of the largest part of the Texas
electricity grid—allows both generators and loads

Figure 1. Trend of large cryptocurrency mining loads

in a typical ERCOT load zone.

Table 1. Day-time Correlation between Loads and
Average Temperatures across Texas

Cryptocurrency-mining
Firms’ Response

ERCOT-wide Load
Response

Non-summer -0.17 0.78
Summer -0.40 0.89

to truthfully disclose their price sensitivity and be
dispatched through their economic dispatch process.
However, ERCOT observes that the cryptocurrency
mining firms, with an individual capacity greater than
or equal to 75.0 MW [1], show price inflexibility
in their electricity consumption offer curve within a
given settlement interval. These firms also exhibit
price flexibility across multiple settlement intervals; for
example, as shown in Table 1, these firms significantly
reduce their demand during summer months when high
system-wide load stresses the power grid. Further,
ERCOT also reports that the responsiveness of these
firms is not uniform across multiple facilities when
exposed to the same circumstances [2]. The
challenges in ensuring grid reliability under these
emerging circumstances can be concerning for any
power grid operator facing a similar stream of
cryptocurrency mining data-center interconnections.
Power grid operators should especially focus on
harvesting flexibility from these resources for the benefit
of the power grid.



In this article, our focus is on large cryptocurrency
mining firms with an individual capacity greater
than or equal to 75.0 MW. These mining firms
typically operate as part of a mining pool1, where
the Bitcoin reward is a function of the hashing power
contributed. Hashing power is directly related to
the energy consumption of mining loads. Therefore,
The operating costs of these firms include electricity
procurement through various mechanisms, including
long-term power purchase agreements, and transactions
at ERCOT’s electricity markets. These firms are also
expected to share the cost burden of Texas’s power
grid infrastructure. In this regard, ERCOT employs
a fixed-cost recovery mechanism, where it identifies
the four highest 15-minute electricity usage intervals
each month from June to September—during peak
demand times—and proportionately allocates the fixed
transmission and distribution network costs among all
load participants based on their average consumptions
in these 4 intervals. These usage intervals are calculated
on an ex-post basis, and ERCOT defines them as (4
coincident peaks) 4CP prices. As an example, for a 500
MW cryptocurrency-mining firm, operating at full-load
during 4CP intervals, the annual fixed cost will be
500MW × $4.96/4CP kW × 1000 × 12 = $29.76M
(the rates for 4CP charges are taken from [3]), which
will be a significant portion of the facility’s operation
cost. On the other hand, cryptocurrency mining
facilities generate revenue by selling cryptocurrencies
through the exchanges and earning power curtailment
credits through participating in ERCOT’s ancillary
services markets by strategically reducing their energy
consumption [4].

Thus, the profit of a mining facility (PM ) can be
defined as:

PM =
∑
∀t

(
πB
t k

BEH
t − πR

t E
R
t − πD

t E
D
t + γ(EM

t )
)

(1)
where,

EM
t = EP

t + ED
t + ER

t = EH
t + ψ(EH

t , Tt) (2)

Here, considering (2) first, we observe that the total
electricity procured by a mining facility (EM

t ) is equal
to the sum of electricity purchased through long-term
power purchase agreements (EP

t ), and day-ahead (ED
t ),

and real-time (ER
t ) electricity markets. Of the total

energy procured, the miners use a portion of their
procured energy for hashing (EH

t ) and another part for
cooling, which is a function ψ(·) of hashing power
and ambient temperature (Tt). Now, considering (1),
πB
t represents the exchange rate of the cryptocurrency,

while πD
t and πR

t are the day-ahead and real-time
electricity market prices, respectively, for interval
t. Parameter kB is the efficiency of cryptocurrency
1 Refer to: https://www.investopedia.com/terms/m/mining-pool.asp

miners’ power supply. The function γ(·) represents
the opportunity cost by avoiding 4CP charges, which
is a function of the miner’s electricity consumption
EM

t . Therefore, the miners’ short-term net profit is
the sum of their revenue from selling cryptocurrency,
the cost of power procured from the electricity markets,
and the avoided cost of not hashing. However, it is
extremely difficult to solve this problem because of
three challenges. First, aside from power purchase
agreements, all the prices are only known on an
ex-post basis. Second, as one crypto miner reported
in its U.S. Securities and Exchange Commission (SEC)
annual report [4], miners do not sell their entire
cryptocurrency inventory, implying that the expected
value of holding cryptocurrency must be higher than the
current exchange rate. Third, the 4CP avoidance cost
for cryptocurrency miners can be extremely complex to
compute.

The response of other industrial facilities to
electricity prices has already been thoroughly discussed
in the literature (see, [5] for a recent review article).
For example, in aluminium smelting industry [6],
researchers have discussed ‘arbitrage price,’ which
identifies a correlation between electricity prices and
aluminium prices. However, contrary to other
industries, cryptocurrency mining firms are different in
two ways. First, the exchange rate of cryptocurrencies
is highly volatile. Second, cryptocurrencies can be
stored in infinite quantities and for indefinite periods.
Therefore, cryptocurrency mining firms may not be
subjected to the same market forces as in other
industries. Nevertheless, like other industrial firms, one
of the possible way of understanding the behaviour of
these firms is through data driven approach.

High-level behavioral analyses of cryptocurrency
mining firms are already available in the literature
[7]. Researchers have also studied the impacts of
various demand response programs for cryptocurrency
mining loads in Texas [8] and mechanisms for
miners to participate in the ERCOT market for profit
maximization [9]. However, the models used in
the existing literature do not consider the fact that
cryptocurrencies are infinitely storable. Additionally,
there is a lack of large-scale, data-driven analyses
that provide predictive insights into why and to
what extent cryptocurrency mining firms respond
to various exogenous factors. As highlighted
in (2), we have regressed cryptocurrency mining
firms’ electricity consumptions against the ambient
temperature, cryptocurrency prices, and day-ahead and
real-time electricity prices. Since 4CP prices are
based on ERCOT system-level electricity consumption
during summer months, mining facilities may use
this additional predictor to hedge against consumption
during 4CP hours, which will also impact energy
consumption. Additionally, there could be other



(a) Real-time Price (b) Day-ahead Price (c) ERCOT System-wide 
Demand

(d) Average Temp. Across
ERCOT

(e) Crypto-mining Firm 
Demand

Figure 2. Histogram of the various hourly datasets for Apr.-Oct. 2022.

Table 2. Summary Statistics for All Variables Contributing to Miners’ Energy Consumptions

Metric Real Time Day Ahead ERCOT System Texas Average Crypto-mining Firm
Price Price Demand Temperature Demand

Mean 65.31 68.48 50218.1 73.4 370.59
Std. Dev. 136.56 79.5 11168.27 14.58 70.67
Skewness 18.58 10.52 0.67 -0.6 -3.57

J-B Test p-Values 0 0 0 0 0
ADF Statistic p-Values 0 0 0.03 0.04 0

BP Test p-Values 0.47 0.44 0.01 0.79 0
Durbin Watson Test 0.26 0.12 0 0 0

endogenous factors based on historical operating
experience that may not be explained by the exogenous
factors discussed before.

Based on these insights, through a thorough
data analysis, this paper proposes an autoregressive
model with exogenous variables (AR-X) to identify
cryptocurrency mining firm’s electricity consumption.
We develop two AR-X models, one describing
the demand during summer and the other during
non-summer months. These developed models would
not only be able to predict cryptocurrency mining
firms’ behavior but can be used to generate synthetic
data for large-scale power system simulations under
various environmental and market scenarios, helping
electric energy system planners, market operators, and
policymakers in the decision-making.

2. Exploratory Data Analysis

Fig. 2 depicts the histogram of the hourly
time-series panel data for these cryptocurrency mining
firms’ (electricity) demand and related explanatory
parameters from March to October 2022. The electricity
price data includes average real-time and day-ahead
prices across all ERCOT load zones. ERCOT system
demand represents the aggregated demand across all
ERCOT-managed regions in texas2. For average
temperature, we collected weather data from several
weather stations across ERCOT-managed regions in
Texas3, and calculated the average temperature across
these stations. The crypto-mining firms’ electricity

2 All these datasets are sourced from www.ercot.com.
3 Available from www.wunderground.com.

consumption dataset represents hourly load data
aggregated across an ERCOT load zone, is not publicly
available, and can be obtained upon request. This
electricity consumption is mixed with other firm load
data, which is unknown to us but is relatively small
compared to crypto-firm consumptions.

As shown in Fig. 2 with summary statistics detailed
in Table 2, crypto-mining firm electricity demand and
prices exhibit significant skewness. From the p-values
of the Breusch-Pagan (BP) test, the dataset, particularly
cryptocurrency miners’ electricity consumption and
electricity prices, displays non-constant variance
(heteroscedasticity). If not addressed, this skewness and
heteroscedasticity can cause inaccuracies in regressive
models. According to the Gauss-Markov assumption,
for linear regression estimators to remain unbiased, the
error terms must have zero conditional means and be
homoskedastic [10]. Additionally, ensuring normality
in the error distribution is essential for applying the
Central Limit Theorem, which aids in inferential
statistics, including hypothesis testing and constructing
confidence intervals.

2.1. Data Transformation

While performing the time-series analysis, it is
essential to remove all diurnal and seasonal patterns in
the datasets. Additionally, transformations are applied
to achieve an approximately Gaussian distribution [11],
especially in those cases where the panel data are
heavily skewed. While this transformation is not
mandatory, it helps in ensuring that the residuals
satisfy the Central Limit Theorem (i.e., namely
that a model constructed from sequential addition



(a) Real-time Price

p-Value (ADF Test): 0.00
p-Value (BP Test): 0.96

p-Value (ADF Test): 0.00
p-Value (BP Test): 0.83

p-Value (ADF Test): 0.00
p-Value (BP Test): 0.99

p-Value (ADF Test): 0.00
p-Value (BP Test): 0.86

p-Value (ADF Test): 0.00
p-Value (BP Test): 0.95

(b) Day-ahead Price (d) ERCOT System-Wide 
Demand

(c) Average Temp. across Texas (e) Flexibale Load Demand(e) Crypto-mining Firm
Demand

Figure 3. Q-Q plots for transformed datasets.

of random variables will, under mild assumptions,
inevitably exhibit Gaussian characteristics). There is
no specific sequence for applying these steps. Given
the exponential growth in crypto-miners penetration in
the ERCOT grid, as highlighted through Fig. 1, we
first extract responsive components from the general
trend. Here, we assumed that the daily peak mining
load demand remains constant within a rolling window,
which also provides us with the trend component. The
hourly time-series miners’ consumption is obtained by
dividing the trend component from the actual time-series
data. The transformation and standardization steps are
given below:

i. We apply a non-parametric transformation to
make the dataset, ys,d, approximately follow
a Gaussian distribution. The inverse quantile
transform, a non-parametric technique, sorts the
dataset in monotonic order, estimates cumulative
probabilities, and identifies discrete quantiles for
transformation. The transformation process is as
follows:

yGs,d = Q−1 (ys,d) (3)

ii. We remove seasonality and diurnal effects by
normalizing the dataset using the sample mean
and standard deviation:

ỹs,d =
yGs,d − µ̂s,d

σ̂s,d
(4)

The quantile plots, Augmented Dickey-Fuller (ADF)
statistic p-values, and BP test p-values in Fig. 3 show
that all transformed datasets are normally distributed,
stationary and homoskedastic.

2.2. Correlation Analysis
2.2.1. Value of cryptocurrencies First, we only
have access to historical daily Bitcoin exchange
rate data, making it difficult to compare it against
hourly cryptocurrency miners’ electricity consumption.
Secondly, the panel data is for the year 2022, when
Bitcoin prices generally exhibited a downward trend,

while, as shown in Fig. 1, there is an overall upward
trend in cryptocurrency miners’ daily peak electricity
consumption. This could lead to incorrect conclusions
about the relationship between cryptocurrency miners’
energy consumption and Bitcoin exchange rate. We
focus on bitcoins here because of their high energy
intensity. To address these limitations, we calculated
the daily net energy consumption for miners using
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Figure 4. Comparing RSI of Bitcoin and daily energy

consumption of crypto-mining firms.

(a.1) Non-summer (11PM-6AM)

r: -0.23  p-value: 0.00

(b.1) Summer (11PM-6AM)

(a.2) Non-summer (10AM-8PM) (b.2) Summer (10PM-8PM)

r: 0.16  p-value 0.00 r: 0.12  p-value: 0.00

r: -0.35  p-value: 0.00

C
ry

pt
o-

m
in

in
g 

F
ir

m
D

em
an

d

C
ry

pt
o-

m
in

in
g 

F
ir

m
D

em
an

d

C
ry

pt
o-

m
in

in
g 

F
ir

m
D

em
an

d

C
ry

pt
o-

m
in

in
g 

F
ir

m
D

em
an

d

Figure 5. Correlation identifying how much of

crypto-miners electricity consumption is responsible

for cooling.



detrended electricity consumption data. Instead of
using actual Bitcoin prices, we employed the Relative
Strength Index (RSI) [12], a momentum measure
describing the speed and magnitude of a security’s price
changes. The RSI is a short-term measure of overvalued
or undervalued security conditions. We wanted to
investigate if the crypto miners are using indices similar
to RSI to control their daily electricity consumption.

The scatter plot of the RSI of the Bitcoin exchange
rate and the daily energy consumption of crypto-mining
firms, depicted in Fig. 4, shows a p-value of correlation
coefficient 0.97. This suggests that, given the panel
data concerned, cryptocurrency miners are agnostic to
Bitcoin prices in the short term.

2.2.2. The cooling energy requirements A
significant portion of the energy consumed by
cryptocurrency mining firms is dedicated to cooling
(see eq. (2)). The cooling requirements are influenced
by factors such as ambient temperature, the efficiency
of the cryptocurrency miners, and hashing energy
consumption. In our case, we are considering
aggregated electricity consumption data across multiple
crypto-ming firms, and we are not aware of the
locations of mining firms, which is why, in this article,
we consider average Texas temperature as a predictor.
We observe, during the daytime, the strong correlation
between temperature and system-wide electricity
prices can obscure the cooling energy consumption
and, even in non-summer months, temperatures can
remain high into the late evening. As illustrated in
Fig. 5, from 10 PM to 6 AM, both in non-summer and
summer periods, we observe weak positive correlations

between electricity consumption and temperature with
p-values close to 0. This confirms the physical principle
that higher ambient temperatures necessitate more
electricity for cooling.

2.2.3. Price responses If we ignore a few price
peaks, historically in the ERCOT market—as shown in
Fig. 2(a,b)—day-ahead prices are statistically higher
than real-time prices and have a comparatively narrower
standard deviation. This implies that day-ahead
prices remain elevated for longer periods. Therefore,
cryptocurrency miners’ response to day-ahead prices
will be stronger than their response to real-time
prices, especially during the summer. Prices tend
to be statistically lower at night, suggesting that
cryptocurrency miners may not be incentivized to
respond to either day-ahead or real-time prices during
both summer and non-summer months during late-night
hours. During the summer, prices remain higher
than during non-summer months, as shown in Fig.
7. We observe that cryptocurrency miners respond
more vigorously to both day-ahead and real-time prices
during the summer months. These price-responsive
behaviors are depicted in Fig. 6. While not shown
for brevity, cryptocurrency miners respond further
vigorously during peak demand hours (3 PM-7 PM).
The correlation coefficient for day-ahead prices during
non-summer times increases to -0.29 (p-value 0.00), and
during summer times to -0.42 (p-value 0.00). However,
selecting a narrower window for real-time prices did not
significantly increase the correlation coefficients.

2.2.4. The predictors contributing to 4CP responses
There are three main issues with using simple

r: -0.16 p-Value: 0.00 r: -0.39 p-Value: 0.00 r: -0.15 p-Value: 0.00

r: 0.01 p-Value: 0.01 r: 0.00 p-Value: 0.96 r: -0.02 p-Value: 0.45

r: -0.25 p-Value: 0.00

r: 0.00 p-Value: 0.96

(a.1) Non-summer (10AM-8PM) (b.1) Summer (10AM-8PM) (c.1) Non-summer (10AM-8PM) (d.1) Summer (10AM-8PM)

(a.2) Non-summer (11PM-6AM) (c.2) Non-summer (11PM-6AM) (d.2) Summer (11PM-6AM)(b.2) Summer (11PM-6AM)
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Figure 6. Cryptocurrency mining firms responses to prices.
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Figure 7. Comparing Demand across ERCOT,

net-load, LFL consumption, and day-ahead price.

price-correlation to understand the direct impact of
electricity prices on crypto-mining firms’ electricity
consumption. Firstly, prices are not known a
priori. Consequently, cryptocurrency miners must
decide whether and how much to shut down their
facilities’ latest with the real-time market at least one
hour in advance because of market rules. Secondly, as
observed in Fig. 7(c-d), the day-ahead prices in June,
August, and September were not significantly higher,
yet cryptocurrency miners responded as vigorously as
they did in July. Thirdly, as shown in Fig. 6, when
electricity prices are low, it is trivial for miners to
operate at full capacity. This implies that cryptocurrency
miners are likely using factors other than electricity
prices to control their energy consumption during
summer months, which must be to avoid 4CP charges.

4CP peaks are calculated based on ERCOT-wide
demand and are price-agnostic. For example, in August
2023, the peak demand occurred on the 10th, while
the price peaked at approximately $4000/MWh on the
11th. Except for a few instances, 4CP peaks in
ERCOT generally arise between 4 PM and 6 PM.
There exists a challenge when regressing crypto-mining
firm’s electricity consumption against ercot system-wide
loads because a higher load leads to higher electricity
prices. To capture how the crypto-mining firms are
hedging against 4CP prices, we need to focus on months
when electricity prices were low, such as June and
September (see Fig. 7(d)), within hours 4 PM-6 PM. As
depicted in Fig. 8, the correlation between electricity
consumption of crypto-mining firms and ERCOT
system-wide electricity demand appears strongest when
considering months with lower electricity prices alone.

2.2.5. Auto-regressive Model The Durbin-Watson
tests in Table 2 indicate a significant presence
of autocorrelation within the cryptocurrency miners’

(a) With June & September

Slope: -0.47, p-Value: 0.00 Slope: -0.45, p-Value: 0.00

(a) With All Summer Months
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Figure 8. Factors responsible for 4CP demand

response in addition to prices.

electricity consumption dataset. Autocorrelation occurs
when variables are correlated with their own past
values, suggesting that the electricity consumption of
cryptocurrency mining facilities is influenced by their
historical operational patterns.

Auto-Regressive Integrated Moving Average
(ARIMA) processes are a class of stochastic processes
used to analyze time series data. The ARIMA process,
attributed to Box and Jenkins [13], hypothesizes that
the residual term is randomly drawn from a normal
distribution with zero mean and constant variance,
known as a white noise process. However, ARIMA
models can be robust to the non-normality of residuals.
As with other time-series analyses, the residuals need
to be homoskedastic, and the time series itself must be
stationary. A general ARIMA model is formally defined
as follows:

Φ(BS)ϕ(B)∇d∇D
s yt = Θ(BS)θ(B)ϵt (5)

where yt is the modeled cryptocurrency miners
electricity consumption data. Here, B is the backshift
operator, where Blrt := rt−l, and S is the seasonality
of the time series. The functions representing
auto-regressive, moving average, and differences and

(a.1) Non-summer data (b.1) Summer data

(a.2) Non-summer seasonally-differenced (b.2) Summer seasonally-differenced

Figure 9. ACF plots without and with seasonal

differencing considering both non-summer and

summer months.



their seasonal forms are defined as ϕ(B) = 1 −∑p
i=1 ϕiB, θ(B) = 1 +

∑q
i=1 θiB, ∇dyt = (1 −

B)dyt, Φ(BS) = 1 −
∑P

i=1 ΦiB
S , Θ(BS) = 1 +∑Q

i=1 ΘiB
S , and ∇D

S yt = (1 − BS)Dyt. The
parameters p, d, q, P,D,Q and S identify the specific
ARIMA process.

Autocorrelation factors (ACF) for both non-summer
and summer months are plotted in Fig. 9. Spikes around
a lag of 24 in the ACF plots, which become prominent
with seasonal differencing of 24 periods, suggest that
the data exhibits seasonality, which is expected since the
time-series dataset is hourly. The diminishing ACF plots
indicate the presence of moving average components.

3. Empirical Observation of
Cryptocurrency Mining Firms’
Behavior

The correlation analysis indicates that factors such
as electricity market prices, average temperatures
across Texas, and ERCOT-wide electricity demand
influence the electricity consumption of cryptocurrency
mining firms in a complex manner. We observe that
these factors can affect each other, necessitating a
focus on specific time slots to capture the underlying
physics-based relationships. The objective of this
section is to perform multivariable linear regression to
develop mathematical models describing the electricity
consumption of aggregated cryptocurrency mining
facilities. We hypothesize the models to be as follows:

EM,ns
t = N−1

(
ψnsTt

+ Id(t)

 ∑
∀n≥0

δD,ns
n πD

t−n +
∑
∀n≥1

ρD,ns
n πR

t−n


+ Ip(t)

 ∑
∀n≥0

δP,ns
n πD

t−n +
∑
∀n≥1

ρP,ns
n πR

t−n


+ARMAns(p, d, q)(P,D,Q, [24])) (6)

EM,s
t = N−1

(
ψsTt

+ Id(t)

 ∑
∀n≥0

δD,s
n πD

t−n +
∑
∀n≥1

ρD,s
n πR

t−n


+ Ip(t)

 ∑
∀n≥0

δP,s
n πD

t−n +
∑
∀n≥1

ρP,s
n πR

t−n


+ Ip(t)

∑
∀n≥1

γnLt−n

+ARMAs(p, d, q)(P,D,Q, [24])) (7)

Here, EM,ns
t and EM,s

t are the modeled cryptocurrency
mining firms’ electricity consumptions during
non-summer and summer months. Variable ψ(·) is
the regression coefficient for temperature. Parameters
Id(t), and Ip(t) are pre-identified binary indicators,
which equal 1 when the impacts of the associated
regressors are active. As discussed earlier, although
the market gate closure happens earlier, facilities may
still utilize the day-ahead-market-cleared data to adjust
their bids in the real-time market. The goal here is not
to understand how much cryptocurrency miners are
bidding into each market but rather to observe how
their consumption correlates with historical data, which
is why, for day-ahead prices, n can be equal to zero.
Here, δD,s

n ρD,s
n are regression coefficients for price

response, and δP,s
n ρP,s

n are for peak price response.
Cryptocurrency mining facilities might use different
predictors, γn, which are combinations of historical
ERCOT system-wide electricity demand based on their
risk appetite during 4CP hours (4PM - 6PM), also
identified through Ip(t). Finally, the ARMA process
models the variance unexplained by the regression
model. Here, N is the inverse transformation used to
revert the transformed dataset.

In this article, contrary to building the model in a
single step, we perform multiple linear regressions to
systematically extract the influence of regressors and
perform regression based on the residuals from the
previous step. To validate the developed regression
models, at each step, we divide the data into training
and testing samples and compare metrics such as mean
squared error (MSE) and root mean squared error
(RMSE). Here, we report only statistically significant
regressors and their associated p-values for brevity.
This section is divided into two subsections dedicated
to modeling demand response during non-summer and
summer times, respectively.

3.1. Demand response model for the
non-summer months

3.1.1. Temperature effect We initially divided the
datasets into training and testing sample days for
regression analysis. However, we observed a significant
discrepancy in the calculated MSE. We discovered that
during certain late nights, the increased temperature led
to a decrease in the electricity demand of cryptocurrency
mining firms. While we don’t know what exactly is
responsible for such discrepancy, the removal of days
with higher average real-time prices based on their
z-scores addressed this issue. Using this procedure, even
with a 50/50 split of the dataset, the MSE for the training
and testing samples remains similar. The calculated
correlation coefficient ψns is 0.14 (S.E. = 0.04, p-value
= 0.00). We assumed a similar correlation holds during
the daytime and removed the associated effect from the
dataset to generate the residuals.



3.1.2. Price effects To capture the impact of prices
as identified in (8), we regressed the crypto-miners
electricity consumption data against electricity price
data considering various lag periods. We focused
on the hours between 10 AM and 8 PM, setting
Id(t) = 1 during these hours. Our analysis revealed
that the strongest p-values occurred when considering
day-ahead price data from 2 days prior (n=48), real-time
prices from the last hour (n=1), and day-ahead prices
from the previous day (n=24). The calculated values are

δD,ns
48 = −0.08 (S.E. = 0.03, p-value = 0.01), ρD,ns

1 =

−0.19 (S.E. = 0.03, p-value = 0.00), and ρD,ns
24 = −0.11

(S.E. = 0.03, p-value = 0.00).
Surprisingly, these results suggest that

cryptocurrency mining facilities, participating in
the day-ahead market, may simply observe the most
recent publicly available day-ahead prices and adjust
their consumption position accordingly. One-day-ahead
real-time prices are not available at the time of
bidding into the day-ahead market. Therefore,
despite the higher variability of real-time electricity
prices, cryptocurrency miners could be utilizing both
one-day-ahead and one-hour-ahead real-time prices to
adjust their electricity consumption in the real-time
electricity market.

3.1.3. Peak price effect Here, Ip(t) = 1 between
3 PM and 7 PM. Considering a mix of regressors, we
found that day-ahead prices from the past hour and
real-time prices three hours prior have the strongest
correlation. Notably, both sets of data are publicly

available for real-time adjustment. The calculated δP,ns
1

is -0.16 (S.E. = 0.05, p-value = 0.00), and ρP,ns
3 is

-0.29 (S.E. = 0.05, p-value = 0.00). The negative
sign indicates that, as cryptocurrency miners observe
increasing prices leading to peak hours, they reduce
their electricity consumption monotonically. Note that
this adjustment can only be carried out in the real-time
market.

3.1.4. Autoregressive component In the ACF and
partial ACF (PACF) factors calculated using the
residuals, we observe spikes at lag 1 in the PACF
plots without seasonal differencing, implying the strong
presence of an AR(1) component. We still observe
spikes appearing at around a lag of 24 in both
ACF and PACF plots, suggesting the seasonality
of the data. Spikes near the lag of 24 in the
seasonally differenced PACF data suggest the presence
of seasonal autoregressive order. We observe that the
ARIMA(1,0,0)(1,1,0)[24] model fits reasonably well
based on the Akaike Information Criterion (AIC). The
model parameters are given as: ϕ1 = 0.83 (S.E. =

(a.) Correlation analysis alone (b) Correlation + autoregressive

Figure 10. Distribution of residuals. Green lines

show the region with 75% quantile.

0.02, p-value = 0.00), Φ1 = -0.43 (S.E. = 0.02, p-value
= 0.00), σ = 0.58 (S.E. = 0.02, p-value = 0.00).
The Ljung-Box test shows the lack of autocorrelation
in the residuals (p-value = 0.82). The ADF test
indicates that the residual is stationary (p-value = 0.82),
and the BP test shows that the dataset is weakly
heteroskedastic (statistic = 77.5). With a 35/65 split
between training and testing samples, we observe an
MSE of 1.37, implying that while the ARIMA model
captures the variability in the dataset well. Note that
these calculations are based on transformed data, and
these figures improve when computed in the original
space.

3.1.5. Accuracy of non-summer model The
empirical equation representing cryptocurrency miners’
demand response during the non-summer months is
given as:

EM,ns
t = N−1 (0.14Tt

+ Id(t)
(
−0.08πD

t−48 − 0.19πR
t−1 − 0.11πR

t−24

)
+ Ip(t)

(
−0.16πD

t−1 − 0.29πR
t−3

)
+ARMAns(1, 0, 0)(1, 1, 0, [24]))

(8)

To compute the overall accuracy of the model, we need
to compare how much of the variability is explained
using correlation analysis alone versus the additional
use of an autoregressive model. From the residuals in
Fig. 10, it can be seen that the correlation analysis
captures a significant amount of variability, which is
further enhanced by the autoregressive model. However,
the lines indicating the 75% inter-quantile range show
a significant amount of variance that the model could
not explain, which, based on the raw data, is due to the
magnitude of peaks.

The mean squared error (MSE) and mean
absolute percentage error (MAPE) of the correlation
analysis-only model are 25.10 and 3.27%, respectively.
These values change to 32.06 and 3.55% when using
the combined correlation and autoregressive model.
However, the true value of the combined model is
reflected in the coefficient of determination, which,
considering errors only up to the 75% inter-quantile



range, improves from 0.32 to 0.77.

3.2. Demand response model for the summer
months

3.2.1. Temperature effect Like non-summer
months, we observed similar discrepancies, where
during certain late nights, higher temperatures are
shown to lead to lower electricity consumption.
However, compared to non-summer times, the impact is
less prominent here, which could be due to temperatures
remaining high through the summer, thereby masking
the relation between temperature and consumption. The
calculated regression coefficient ψs is given as 0.12
(S.E. = 0.04, p-value = 0.01).

3.2.2. Price effects As in the non-summer model,
we focused on the hours between 10 AM and 8 PM
for all four summer months and regressed the electricity
consumption data against price data. Here, we observed
that the strongest p-values occurred when considering
real-time price data from 3 days prior (n = 72) and
the current day-ahead prices (n = 0). The calculated

values are δR,s
72 = 0.09 (S.E. = 0.04, p-value = 0.03) and

ρD,s
0 = −0.40 (S.E. = 0.04, p-value = 0.00).

This behavior essentially implies that there is a
negative correlation between the real-time electricity
prices from 3 days prior and the current day-ahead
electricity prices. Specifically, if the day-ahead prices
are significantly high, the real-time prices will also be
higher during the same period, leading cryptocurrency
mining firms to significantly reduce the intensity of their
operations.

3.2.3. Peak price effect Prices peak during the
summer months, especially in the afternoon hours.
These are the same hours when the demands peak
as well, and ERCOT calculates 4CP charges based
on consumption during these hours. Therefore, it is
of interest to isolate how much the cryptocurrency
miners are responding because of peak prices from
the hedging to avoid 4CP charges. Here, we focus
on the former, where we want to investigate, like the
non-summer months, how increased prices contribute
to cryptocurrency miners’ response. Therefore, we
focus on July and August datasets, the months with
higher price volatility, specifically between 3 PM and
7 PM. We observe that the decision to reduce electricity
consumption due to peak electricity prices is based on
the recently cleared real-time prices. The coefficient

showing the relationship ρP,s
1 is -0.13 (S.E. = 0.06,

p-value = 0.033).

3.2.4. 4CP effect Of the 2.9 GW of installed
capacity in ERCOT, if some cryptocurrency miners try
to avoid the critical peak, the peak demand could shift to

later in the same day or even to the next day. To examine
these effects, which may occur primarily to avoid 4CP
charges, we focus on June and September, specifically
between 3 PM and 7 PM. Interestingly, we find that the
electricity consumption of cryptocurrency ming firms
is a weighted average of their consumption over the
past two days during similar hours. The correlation
coefficients are given as γ24 = −0.89 (S.E. = 0.11,
p-value = 0.00) and γ48 = 0.39 (S.E. = 0.114, p-value =
0.00). This suggests that miners might be basing their
behavior on ERCOT’s system-wide demand from the
previous day. If the demand two days ago was not too
high, but the demand yesterday was high, it is likely that
today’s demand will also be high. This behavior appears
to be completely rational.

3.2.5. Autoregressive component Like
non-summer months, we observed that the ARMA
model (1,0,0)(1,1,1,[24]) could explain a significant
part of the variability in the residual dataset. The model
parameters are given as: ϕ1 = 0.84 (S.E. = 0.01, p-value
= 0.00), Φ1 = -0.09 (S.E. = 0.03, p-value = 0.00), Θ1

= -0.93 (S.E. = 0.02, p-value = 0.00) and σ = 0.7 (S.E.
= 0.01, p-value = 0.00). The Ljung-Box test shows
the lack of autocorrelation in the residuals (p-value
= 0.88). The ADF test indicates that the residual is
stationary (p-value = 0.00), and the BP test shows that
the dataset is weakly heteroskedastic (statistic = 94.9).
With a 35/65 split between training and testing samples,
we observe an MSE of 1.09, implying that while the
ARIMA model captures most of the variability in the
dataset.

3.2.6. Accuracy of summer model The empirical
equation representing cryptocurrency miners’ demand
response during the summer months is given in (9). The
residuals suffer from similar issues as was discussed
in the earlier model (with RMSE and MAPE of 83.14
and 90.96% with the correlation-only model to RMSE
and MAPE of 60.86 and 64.24% with the incorporation
of autocorrelation); however, the efficacy of the model
is further evidenced through the increased coefficient
of determination of 0.93 to 0.99, implying that the
heuristic-based correlation model itself can explain a
significant portion of cryptocurrency miners’ behavior,
and the model get strengthened with inclusion of
ARIMA model.

EM,s
t = N−1 (0.12Tt

+ Id(t)
(
−0.40πD

t + 0.09πR
t−72

)
+ Ip(t)

(
−0.13πR

t−1

)
+ Ip(t) (−0.89Lt−24 + 0.39Lt−48)
+ARMAns(1, 0, 0)(1, 1, 1, [24]))

(9)



4. Conclusion

Through a comprehensive data analysis we present
an econometric model that provides a robust framework
for understanding the behavior of large flexible
cryptocurrency mining firms in the Texas power grid.
By incorporating internal factors through the SARIMA
process and external factors via selective external
correlations, our model achieves reasonable accuracy.
The quantile transformation used captures some of
the nonlinearities among the variables. Our analysis
reveals that cryptocurrency mining firms’ electricity
consumption is mostly influenced by temperature,
electricity prices, and demand response strategies rather
than by short-term fluctuations in cryptocurrency prices.
This insight challenges common misconceptions about
the drivers of currency mining activities and highlights
the importance of considering multiple factors in
predictive modeling.

The practical utility of our model lies in its ability
to generate synthetic datasets that can simulate various
grid conditions and mining behaviors. This capability is
crucial for power system simulations and for developing
strategies to enhance grid reliability and efficiency.
Also, this study can help power grid operators better
anticipate and manage the impact of these emerging
technologies on the energy landscape.
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