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Abstract—Foundational Large Language Models (LLMs) such
as GPT 3.5 turbo allow users to refine the model based on newer
information, known as ”fine-tuning”. This paper leverages this
ability to analyze AC-DC converter behaviors, focusing on the
ripple current in DC-link capacitors. Capacitors degrade faster
under high ripple currents, complicating life monitoring and
necessitating preemptive replacements. Using minimal invasive
measurements from a full bridge rectifier and PFC-boost con-
verter, we developed LLM-based models to predict ripple content
in DC-link currents under noisy conditions. In this regard,
based on simulations and experimental data from a full-bridge
rectifier and a 1.5kW PFC, we have demonstrated the LLMs’
ability for near accurate prediction of capacitor ripple current
estimation. This study highlights the LLMs’ potential in modeling
nonlinear power electronic circuit behaviors and determining
data requirements for precise circuit parameter predictions to
predict component degradation and/or performance without any
additional sensors. The final paper will have expanded results,
capacitor ESR estimation based on fine tuned LLM output.

Index Terms—Power electronic Converters, Fine-tuning, Large
Language Models (LLMs)

I. INTRODUCTION

The 2021 publication [1] effectively summarizes the ex-
panding applications of artificial intelligence (AI), excluding
the use of large language models (LLMs), in the field of power
electronics. In the recent past, the generative nature of large
language models (LLMs) and their ability to perform various
natural-language processing tasks has been garnering signifi-
cant attention in the scientific and industrial community [2].
Reference [3] details the application of LLMs in chip design
at NVIDIA. References [4], [5] explore LLM applications in
electronic design automation and power converter modulation
design. References [6]–[10] discuss emerging applications of
LLMs in electric power systems and smart grid. These diverse
applications are enabled by transformer models, which are the
foundation of LLMs, owing to their efficient and powerful
pattern recognition capabilities across various tasks. This
ability is facilitated by a vast number of model parameters,
developed and modeled using extensive datasets. The influx
of investment into LLM research and development highlights
the industry’s commitment to understanding and leveraging
these capabilities. The premise is that if the LLMs are able to
predict the next word in a sentence (a token, to be specific),
they should also be capable of building a predictive model of

a nonlinear circuit with reasonable accuracy if the LLM is fine
tuned using domain-specific data. Therefore, there is a strong
potential for LLMs to be used to understand the nonlinear
circuit behavior in the field of power electronics, a subject
matter of this paper.

Figure 1: Single phase boost power factor correction (PFC) AC
to DC rectifier schematic, Vin, Vo, and Icap are the variables
of interest

Converters based on single-phase Power Factor Correction
(PFC) circuits are essential components in a wide range of
applications, from laptop chargers to switching power supplies
used in large data centers, because they enable unity power
factor operations. These converters also have an immense
growth potential from $2.3B in 2023 to $4.83B by 2031
[11]. As depicted in Fig. 1, like other AC/DC or DC/AC
converters, DC-link capacitors play an important role in the
PFC circuits because they help in smoothing out the voltages
as the converters operate in various system conditions. In PFC
circuits, DC-link capacitors behave as a decoupling element,
bridging the low-frequency 50/60 Hz utility voltage and the
high-frequency DC-DC conversion stage. However, these ca-
pacitors have a limited life span and can fail prematurely as
they are subjected to various stressed operating conditions.
One of the common causes of breakdown for power electronics
circuits is the failure of capacitors [12]. The failure of a
capacitor is not always immediately apparent, which can lead
to increased strain on the remaining capacitors, accelerating
their degradation and leading to eventual failure.

Capacitor life deteriorates faster under conditions of el-
evated operating temperatures, high humidity, over-voltage
stress, pulsed discharge, and excessive ripple currents. In PFC
circuits, capacitors experience heightened ripple current, exac-
erbated by real-world operational environments. This increased



ripple current elevates capacitor operating temperatures, accel-
erating their aging process [13]. Cyclic charging and discharg-
ing in the DC bus of a power electronic circuit induce periodic
fluctuations known as ripple currents. This phenomenon results
in power loss through heat dissipation, raising the internal
temperature of capacitors and subsequently increasing their
Equivalent Series Resistance (ESR), which further increases
ESR in a positive feedback loop [14]. Prolonged exposure to
elevated temperatures compromises capacitor reliability and
longevity, shortening operational lifespan and accelerating
degradation. Hence, understanding and accurately predicting
ripple currents (a nonlinear phenomena) is critical in ensuring
the reliability of power supply systems. Previous research has
demonstrated the ability of using circuit harmonics in accurate
ESR predictions [15]. This paper seeks to explore the practical

Figure 2: Block diagram of the proposed LLM fine tuned
model for the ac/dc rectifier PFC circuit

applications of LLMs in predicting key behaviors of power
electronic circuits, specifically ripple current content in the
DC-link capacitors, under various operating conditions. Fig.
2 shows the block diagram of the proposed fine tuned LLM
prediction approach. Our contributions are, therefore, twofold:
(i) Use of LLMs for the Prediction of Nonlinear Circuit

Behavior: This study investigates whether LLMs, with
sufficient training, can accurately model nonlinear behav-
iors in power electronic circuits. In this regard, we have
tested with direct question answering, few-shot prompting
[16], and LLM fine-tuning.

(ii) Data Requirements for Circuit Parameter Prediction: We
performed both numerical simulations and hardware ex-
periments to obtain both the Root Mean Square (RMS)
and ripple content in the DC-bus capacitor voltage for
various operating conditions.

II. USE OF LLM “FINE-TUNING” FOR MODELING THE
BEHAVIOR OF POWER ELECTRONIC CIRCUITRY

The ability to learn from very few labeled samples is a basic
attribute that separates machines from humans, and LLMs
have shown a similar ability in power engineering applications
[7]. However, due to the task-agnostic feature of pre-trained
LLMs for natural language processing, LLMs do not do well
in application-specific tasks, such as circuit analysis as can be
seen in Fig. 3. Typically LLMs utilize self-consistency in their

responses, and in the current example, LLMs simply assume
that DC bias as well as second, and fourth harmonic voltages
do not change as the system load changes, which is incorrect.

Figure 3: Example of inaccurate output in power electronic
circuit analysis when using GPT 3.5, returned the same circuit
values as the given example for a different circuit.

Figure 4: Motivating example for comparing in-context learn-
ing and fine-tuning for function mapping.

Next, we pose our problems as an unknown function map to
alleviate the self-consistency issues regarding circuit analysis.
As shown in Fig. 4(a), we provide x and f(x) pairs to the
LLM and query for an unknown value of x. Based on our
observation, LLM (GPT 3.5 turbo in the current context)
generated responses become consistent. Based on the sim-
ulated dataset containing DC, second, and fourth harmonic
components corresponding to different loading conditions, it
can be seen that as the LLM is provided with more and more
examples, the accuracy of LLM-generated results changes.
However, as shown in Fig. 5, the model accuracy may not
monotonically improve as LLMs are provided with more data.

It is well-known from the literature that fine-tuning out-
performs in-context learning without parameter updates [17].
Fine-tuning of LLMs involve the adaptation of pre-trained
models through additional training on targeted datasets, where
labeled data is provided for the model for pattern identification,
thereby refining their capabilities for specific tasks or domains.
This process enhances the model’s performance by tailoring
its general-purpose abilities to meet the nuanced demands of
particular applications.

In this paper, we aim to bridge the gap where, at each
training step, we expose the LLM to a few examples and
compare LLM-generated responses with labeled known results
to update the transformer model based on these errors. This
process can be explained using Fig. 4(b). As shown in the



figure at every step (shown with different colors) we expose
the LLM with a few examples, and a sample point, where
the LLM can predict the function value. LLM model gets
updated by comparing the LLM estimated value with actual
measurements. Once the model is trained, it is evaluated on
the testing set, a subsection of the data which contains unseen
examples, in order to assess its performance and ability to
generalize. Additionally, fine-tuning involves hyperparameter
tuning to optimize the model’s architecture and learning pro-
cess further. Finally, after fine-tuning is complete, the fine-
tuned LLM can be deployed for inference on new data, where
it can generate predictions or perform other specified tasks
with improved accuracy and effectiveness.

Figure 5: The effect of the number of examples on the
prediction errors: As the LLM is introduced with more and
more examples as contexts, the accuracy of LLM-generated
results change in a non-monotonic way.

Figure 6: Sample of input prompt given to fine-tune the model,
the same formatting was used for both the bridge rectifier and
the Power Factor Correction circuits

A sample of an example prompt for fine-tuning is shown
in Fig. 6. As in other deep-learning methods, learning by the
LLM relies on several hyperparameters, such as the learning
rate, batch size, and number of training epochs. Given that the
LLMs are already pre-trained, and that the datasets are noisy,
we need a balanced approach to the ‘fine-tuning.’ While a
small learning rate is important in order to mitigate the effect
of noisy data, it should not degrade the well-tuned weights
of the pre-trained LLM. A larger batch size can reduce the
variance in the computed gradient; the available hardware
resources might also constrain the choice of batch size, and
in our case, it gets more expensive. Thirdly, in the presence
of noisy data, a larger number of training epochs may lead
to overfitting the training data, which results in an increase
in the training set performance and a decrease in testing
performances. Therefore, one should focus on conservative
updates that carefully adapt to new patterns in the data, leading
to improved performance on realistic tasks without capitulating
to noise-driven inaccuracies.

The metric identifying the discrepancy between the pre-
dicted outputs of the LLM and the actual labeled outcomes

during the fine-tuning process is identified as ’training loss.’
Given that we utilized GPT-3.5-turbo, we utilized categorical
cross-entropy loss for training [18]. Typically, the essence of
the training process is to minimize this loss, which signi-
fies a reduction in the error rate of the model’s predictions
against the ground truth. The optimization algorithms adjust
the model’s parameters (weights) to reduce the training loss,
refining the LLM’s ability to generalize well to unseen data.
Fig. 7(b) demonstrates the training loss for the simulated full-
bridge rectifier circuit. The training loss sharply decreases
within the first few steps, and the loss converges. As shown
in Fig. 7(a), fluctuations in the training loss during the fine-
tuning phase reflect the LLM’s ability to generalize unknown
functions despite the dataset being noisy or complex. The
overall convergence of the loss function indicates that the
model learns about the underlying pattern within the dataset.

(a) Experimental bridge rectifier (b) Simulated bridge rectifier

Figure 7: Training loss for the Bridge rectifier fine-tuning: (a)
Trained on the experimental data, constant peaks show pattern
complexity or noise. (b) Trained on the simulated data, ideal
relation which shows smooth convergence.

III. CAPACITOR CURRENT RIPPLE ESTIMATION

In this study, we are examining the behavior of two specific
power electronic circuits: the bridge rectifier (Fig. 8) and the
boost PFC circuit (Fig. 1). Specifically, we are analyzing the
behavior of capacitor current for both circuits, varying the
load conditions for the bridge rectifier and the input voltage
for the PFC, essentially varying the power consumption of
both circuits. Once the system reaches a steady state, the
waveform is captured. For the experimental setups, we are
using an oscilloscope along with differential probes for data
measurements, a variable transformer for the power supply,
and an electric load for the bridge rectifier circuit. Alterna-
tively, the power electronic circuitry is simulated using PSIM
software, and we are capturing the measurements using virtual
probes. Fast Fourier transform is applied to the collected data
to capture the RMS, second harmonic, and fourth harmonic
current amplitudes for the bridge rectifier and PFC circuits.

To understand the accuracy of the developed model we
divided the collected data into training and testing sets. While
LLMs, as generative AI models, produce similar responses to
the same prompt, there’s still a small inherent randomness
in their generation process, influenced by factors such as
the model’s internal state or the random sampling during
generation. To address this variability, we employed a strategy



of running the model multiple times and averaging the output
values. This approach helps to stabilize the predictions and
mitigate the impact of randomness.

IV. ANALYSIS OF AC-DC RECTIFIER SYSTEMS

Figure 8: Single phase bridge rectifier schematic, Vin, Vo, and
Icap are the variables of interest.

A. Full-Bridge ac-dc Rectifier (Fig. 8)

As a proof of concept a full bridge rectifier circuit was first
simulated using PSIM and then built in the lab following the
schedmatic shown in Fig. 8 to assess the regressing capabilities
of the LLM in power electronics circuits, the experimental
setup of which is shown in Fig.10. The input as well as the
capacitor voltage and currents, were recorded at steady state.
Further computations were performed to obtain the current
RMS, as well as the second and fourth harmonic components
of the capacitor current. The harmonic components were
obtained using the Fast Fourier Transform (FFT), a mathemat-
ical algorithm utilized for signal analysis, which decomposes
a waveform into its constituent frequencies, facilitating the
identification and quantification of harmonics within the signal
[19].

The bridge rectifier circuit had the independent variable
as the power consumption, which was varied as a result of
changing the load in the experiment, while all other circuit
components remained constant. A total of 50 different steady
state data sets were collected for different resistance values.
This data was then split into training and testing sets in order
to build and assess the model performance respectively. The
primary aim of the model is to predict the effect of changing
the power consumption value on the current of the capacitor
along with its’ harmonics while maintaining an otherwise
constant circuit. A total of 42 instances were used for the
training purposes while 8 remained separated in the training
stage as to test the resulting model capabilities.

Fig. 7 shows the training loss performance difference be-
tween the simulated and experimental models of the bridge
rectifier. When comparing the training loss per step for the
simulation data and the experimental data, the simulation loss
function shows an initial steep decrease, followed by a general
stabilization with occasional spikes, indicating moments where
the model encountered anomalies in the simulated dataset.
Notably, the loss in this graph rarely exceeds 0.5 after the
initial drop, indicating that the simulated environment is

TABLE I: MEAN ABSOLUTE PERCENT ERROR (MAPE EQN. 1) OF
EXPERIMENTAL BRIDGE RECTIFIER CIRCUIT (IN %), NOTICE THE
HIGHEST ERROR IS 6.4%.

Power
(W)

Icap
RMS (%)

Icap 2nd Har-
monic (%)

Icap 4th Har-
monic (%)

533 0.49 0.53 0.64
538 0.19 0.07 0.05
564 0.17 0.33 0.37
626 0.06 0.31 0.06
646 2.82 0.13 0.72
674 0.28 0.95 0.58
710 3.83 6.4 4.96
929 4.91 0.83 3.05

generally idealized. Conversely, the graph for the experimental
data, although starting at a similar loss level, exhibits much
greater variability and slower convergence, which is charac-
teristic of real-world data’s inherent noise and complexity.
The loss values fluctuate more frequently and remain higher
throughout the training process, highlighting the challenges
of training models on experimental versus simulated data.
These observations suggest that while the model trained on
simulated data may perform well under ideal conditions, it
may lack robustness when faced with real-world variability. In
contrast, the model trained on experimental data, despite its
fluctuations and slower convergence, may demonstrate better
adaptability and robustness to diverse conditions, including
non-ideal behaviors in the circuit.

MAPE =

(
1

n

n∑
i=1

∣∣∣∣Ai − Fi

Ai

∣∣∣∣
)

× 100% (1)

The regression performance metric of choice is the Mean
Absolute Percentage Error (MAPE), which is calculated using
(1). MAPE calculates the average of absolute differences
between predicted values and actual values, expressed as
a percentage of the actual values, where Ai is the actual
value, Fi is the predicted value, and n is the number of data
points. This metric intuitively reflects the error magnitude in
percentage terms, which is invaluable for comparing model
performance across datasets of varying scales. Despite the
relatively high training loss depicted in Fig. 7(a), the fine-
tuning model performs exceptionally well as can be seen in
Figs. 9 where the blue dots represent real data and the orange
dots represent predictions. The fine tuning model achieves
remarkable accuracy in its predictions, with none of the MAPE
values exceeding 2% as can be seen in Table I.

B. Single phase boost PFC ac-dc Converter (Fig. 1)

In this section the performance of the boost PFC ac-dc
converter is analyzed (Fig. 1. The capacitor current is analysed
while the input power is varied similar to the bridge rectifier
circuit. Similar calculations to those used for the bridge
rectifier circuit to process the raw data through FFT in order to
extract the capacitor current RMS as well as both the second
and fourth harmonics from the measured data were applied.

Fig. 11 shows the training loss performance of the exper-
imental PFC circuit. Initially, the fine- tuning model exhibits
high variability in training loss, peaking at around 0.8, which



(a) (b) (c)

Figure 9: Experimental results: comparing Actual and Predicted values for the experimental FFT fine-tuned predictions for the
bridge rectifier (Fig. 8). Blue dots are true values while orange are predicted using the fine-tuning model, all three graphs are
smooth and have high prediction accuracy: (a) Icap RMS values. (b) Icap second harmonic. (c) Icap fourth harmonic.

Figure 10: Bridge rectifier test setup. The figure shows the
bridge rectifier circuit connected to an electronic load that
precisely adjusts the load, a Variac for power supply, and an
oscilloscope to monitor voltage and current.

Figure 11: Fine tuning model loss of the PFC circuit as seen
in Fig. 1. High fluctuations indicate noise or complexity of
data, near convergence towards the later steps.

rapidly decreases within the first 20 steps. Following this,
the loss demonstrates continued but less intense fluctuations,
primarily ranging between 0 and 0.4. This moderation suggests
an ongoing adjustment to noisy or complex data elements.
Notably, the peaks of loss gradually diminish, with early
training sessions reaching higher peaks, and later sessions
stabilizing around 0.2. As the training progresses, an overall
downward trend in loss values is observed, particularly evident
beyond step 80, with a significant flattening and clustering of
values below 0.3 towards the end. This behavior indicates that
the model is approaching an optimal level of performance,
adjusting more consistently to the intricacies of the training
data and potentially nearing its learning limits given the current
data and parameter settings.

Table II contains the MAPE corresponding to the predicted

Figure 12: Sample of collected waveform for the PFC circuit:
(a) Shows the captured waveforms of Iin and Icap, in red and
green respectively. (b) Shows the computed FFT of Icap, the
second and fourth harmonics are the values of interest.

capacitor current second and fourth harmonics as well as the
RMS of the experimental PFC circuit. All three variables have
an average MAPE value below 3%: 1.2% for current RMS,
0.9% for current second harmonic, and 2.5% for current fourth
harmonic. Fig. 12 (a) shows a sample waveform of the PFC
circuit experimental data where the red waveform corresponds
to Iin and the green waveform to Icap while Fig. 12 (b) shows
the computed FFT harmonics of choice. The high accuracy
of the model can likely be attributed to the strong pattern
recognition ability of the fine-tuning model, which can be
seen from Fig. 13. The prediction performance of each of the
different variables of interest are graphed in Fig. 13, where
the actual true data is graphed in blue while the predicted
values are graphed in orange. The final paper will have more
extensive analysis by LLM on PFC and will include capacitor
voltage analysis as well as ESR estimation.

TABLE II: MEAN ABSOLUTE PERCENT ERROR (MAPE) OF EX-
PERIMENTAL POWER FACTOR CORRECTION CIRCUIT (IN %) AS
SEEN IN FIG. 1.

Power(W) Icap RMS(%) Icap 2nd Har-
monic (%)

Icap 4th Har-
monic (%)

1151 2.75 2.97 0.31
1104 0.66 1.47 1.21
1286 2.12 0.87 3.98
1379 0.75 0.63 3.66
1258 2.26 0.14 1.52
1318 0.61 0.59 5.64
1272 0.22 0.16 2.02
1363 0.36 0.03 1.73



(a) (b) (c)

Figure 13: Experimental results: comparing Actual and Predicted values for the experimental FFT fine-tuned predictions for
the single phase boost PFC (Fig. 1). Blue dots are true values while orange are predicted using the fine-tuning model, all three
graphs are have high prediction accuracy despite the noise: (a) Icap RMS values. (b) Icap second harmonic. (c) Icap fourth
harmonic.

V. CONCLUSION

This paper explores the use of large language models
(LLMs) to predict power electronic circuit behavior based on
limited measurement data. Notably, the LLMs developed for
the bridge rectifier and single-phase power factor correction
(PFC) circuits achieved acceptable accuracy. Specifically: (a)
The average mean absolute error for estimating the RMS
values of the capacitor’s second and fourth harmonic current
components was less than 6%; (b) Experimental datasets
obtained using the bridge rectifier circuit model showed an
average prediction error of 1.59% for the Icap RMS, 1.19%
for the second harmonic, and 1.30% for the fourth harmonic
component of the capacitor current; (c) Despite noisy training
data (only 42 samples), the LLMs successfully captured the
general trend; (d) The approach of modeling the prediction
task as the mapping of an unknown function suggests broader
applicability across different domains, demonstrating function
generalization. In conclusion, the study highlights the potential
of using LLMs with training sets to predict the rms capacitor
ripple currents without the use of additional sensors. Further
details on deducing capacitor ESR and heating will be pre-
sented in the final paper / conference presentation.
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