
Pre-Event Two-Stage Proactive Control for
Enhanced Distribution System Resiliency
SUBIR MAJUMDER 1, (Member, IEEE), GOWTHAM KANDAPERUMAL2, (Member, IEEE),
SHIKHAR PANDEY2, (Member, IEEE), ANURAG K. SRIVASTAVA 1, (Fellow, IEEE),
AND CLAY KOPLIN3, (Member, IEEE)
1Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
2ComEd, Chicago, IL 60181, USA
3Cordova Electric Cooperative (CEC), Cordova, AK 99574, USA

Corresponding authors: Anurag K. Srivastava (anurag.srivastava@mail.wvu.edu) and Subir Majumder (subir.majumder@mail.wvu.edu)

This work was supported in part by the U.S. Department of Energy Resilient Alaskan Distribution system Improvements using
Automation, Network analysis, Control, and Energy Storage (RADIANCE) and U.S.-India collAborative for smart diStribution System
wIth STorage (UI-ASSIST) Project under Grant DE-IA0000025.

ABSTRACT Recent advancements in prediction technologies have motivated the power distribution utilities
to actively utilize forecasts to minimize the impact of high-impact low frequency (HILF) events. Accurate
forecasting coupled with past operational experiences potentially enables pre-event control, aiming to reduce
the impact on the system in a network with finitely large numbers of automatic andmanually operated control
devices. Impacts to the critical infrastructure facilities, also known as critical loads (CLs), are minimized
when a section of the network is appropriately deenergized before the event strikes. However, predictions are
not perfect, and given limited accuracy with ever-changing weather forecasts, control actions are required to
be constantly updated until the event has passed. Once the events are predicted with high enough confidence
and the necessary reconfiguration strategy has been identified, the operator must configure the manually
operable switches significantly ahead of event landfall to ensure the operational crews’ safe return from
potentially hazardous zones. Given limited resource availability and requisite manual switching operations,
some of the loads would also have to be deenergized. Overall resiliency of the system will be improved if the
loads remain connected through remotely operable switches until minutes before the event makes landfall.
The proposed two-stage control framework with a necessary mathematical formulation facilitates the same.
Furthermore, the proposed framework enables continuous corrective action based on available lead time. The
developed proactive control framework is demonstrated using a modified IEEE 123-Node system model and
a real-world isolated µ-grid based on the Cordova Electric Cooperative system with superior performance
results.

INDEX TERMS Critical loads, distribution system resiliency, extreme events, optimization, proactive
restoration.

NOMENCLATURE
Selected set of parameters and variables are given below:

A. SETS
i, j Indices representing nodes.
f Index representing substation nodes.
t Index representing various intervals.
B Set of all nodes in network.
Bf Set of nodes that are predicted to remain healthy.

.

BF Set of all substation nodes.
B′ Set of all nodes that remain disconnected in the

post-disaster network.
W Set of all distribution lines.
T Set of all intervals.
F Set of nodes facing the catastrophe.

B. PARAMETERS
λ̄i Outage forecast indicator of node i.
xi,j Connectivity of permanent lines nodes i

and j respectively in the typical distribution
network.
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x̂i,j, ŷi,j Revised connectivity of permanent lines
and switches between nodes i and j respec-
tively after solving stage 1 of the optimiza-
tion problem.

SLi,j Power flow limit between nodes i and j.

PCL,ti Active power critical load demand at node i
during interval t .

QCL,ti Reactive power critical load demand at
node i during interval t .

PNCL,ti Active power non-critical load demand at
node i during interval t .

QNCL,ti Reactive power non-critical load demand at
node i during interval t .

PDGi ,PDGi Aggregated active power generation limits
from diesel generator at node i.

QDGi ,QDGi Aggregated reactive power generation lim-
its from diesel generator at node i.

PF,ti ,QF,ti Scheduled injection from substation at
node i during interval t .

RRDGi , RRDGi Ramping capabilities of the diesel genera-
tor at node i.

SDGi Apparent power limit of diesel generator
connected at node i.

M A large positive real number as a pert of
big-M method.

Ri,j,Xi,j Resistance and reactance of lines con-
nected between nodes i and j respectively
in the typical distribution network.

SBSDi Apparent power limit of battery storage
device connected at node i.

K Interval parameter to calculate state of
charge within battery.

ηch, ηdch Charging and discharging efficiencies of
battery storage devices.

SOCi,SOCi State of the charge limits of the battery
connected at node i.

kVLi , kNCLi Value of connected critical and non-critical
loads at node i.

vi, vi Lower and upper limit of voltages at node i.
vref Reference voltage at controlled nodes.

C. VARIABLES
zi,j Directed connectivity between nodes i and j

without isolating the disconnected nodes.
λi Connectivity of node i in the post-disaster

partly disconnected distribution network.
ψi,j Directed connectivity between nodes i and j

after isolating the nodes in the post-disaster
network.

pti,j, q
t
i,j Active and reactive power flow between

nodes i and j within interval t in the post-
disaster network.

yMi,j, y
R
i,j Connectivity of manual and remotely oper-

able switches between nodes i and j respec-
tively in the typical distribution network.

PDG,ti Active power injection from diesel generator
connected at node i during interval t in the
post-disaster network.

QDG,ti Reactive power injection from diesel genera-
tor connected at node i during interval t in the
post-disaster network.

PBSD,ti Active power injection from battery storage
device connected at node i during interval t
in the post-disaster network.

QBSD,ti Reactive power injection from battery storage
device connected at node i during interval t in
the post-disaster network.

PF,ti ,QF,ti Active and reactive power injection from the
feeder during interval t .

Vi Variable to denote radiality of the post-
disaster PDS.

αti , β
t
i Connectivity of critical and non-critical loads

at node i during interval t in the post-disaster
network.

8DG
i Operating status of diesel generator at node i.

vti Squared nodal voltage at node i during inter-
val t in the post-disaster network.

δi,t Charging and discharging status of the battery
storage device connected at node i during
interval t in the post-disaster network.

SOCti The state of charge of the battery storage
device connected at node i during interval t
in the post-disaster network.

ˆ(·) Associated second stage variables.
(·)∗ Optimal solutions obtained with solving

Stage 1 of the optimization problem.

I. INTRODUCTION
Recent studies indicate that extreme weather high-impact low
frequency (HILF) events are becoming more frequent and
severe, with substantial damage to the power grid [1], one
of the critical infrastructures of the modern society. Once the
extreme event makes landfall, the available generation from
the transmission grid often gets significantly reduced [2],
forcing the power distribution systems (PDS) to operate with
limited generating resources, if there are any. PDS may also
need to operate as an islanded µ-grid for a flexible pre-,
and post-HILF event operation [3]. Various controllers and
relays, some of which are equipped with autosynchroniz-
ers, facilitate seamless µ-grids operation of a part of the
PDS [4], [5]. Available distributed generation facilities, such
as diesel generators (DGs), battery storage devices (BSDs),
and distributed energy resources (DERs), ensure resource suf-
ficiency in µ-grids or the PDS as a whole. Furthermore, in a
resource-constrained scenario, non-essential facilities need
to be shed through advanced metering infrastructure (AMI),
or the entire feeder can be dropped. Reclosers, sectionalizers,
and various other switches at strategic grid edges can help us
achieve the requisite grid flexibility by proactively creating
alternative paths to critical infrastructure facilities, also called
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critical loads (CLs), such as Hospitals, Police Stations, Fire
Stations, and other infrastructure (see [6] for a detailed defi-
nition) in the wake of disasters. Such a prioritization ensures
supply continuity or minimization of the outage duration for
the CLs, improving overall resiliency of the society.

The impact of HILF events will be significantly reduced
if the PDS is sufficiently prepared using early warning and
prediction. Given recent advancements in short-term predic-
tion accuracy of weather models, utilities across the USA are
actively developing techniques for HILF early-warning, and
forecasting impact on the power infrastructure [7] to improve
their resiliency considerably. The use of machine learning
(ML)-based node and line outage predictors is notable in
the literature [8]–[10]. High-performance sensor deployment,
data acquisition, processing technology [11], the needed
information and communication technology (ICTs), along
with, available rich historical event data [12] can significantly
help in the development of the predictive models, as well as,
judicious deployment of control actions for improving power
system resiliency.

Multiple proactive PDS resiliency improvement strategies
are reported in the literature. These include topics such as
proactive crew mobilization for optimal post-disaster PDS
restoration [13], pre-event diesel fuel and battery (in the
form of electric buses) allocation [14], generator re-dispatch,
topology switching [15], proactive resource sufficiency facil-
itating µ-grid operation [16], and proactive charging of
BSDs for successful in-event µ-grid operation [17] for refer-
ence. Additionally, related literature that considers sequential
re-dispatch of DGs [18], dynamic line rating based on prob-
abilistic scenario generation [19], island formation based on
Monte-Carlo simulation [20], data mining approaches for an
iterative load shift-and-shed [21], are notable. While robust
optimal solutions are majorly used in the existing literature
to ensure grid survival even in the wake of a worst-case
uncertainty, they perform poorly in the best-case scenario,
especially when the HILF events continuously evolve and can
entirely disappear as time progresses. With increasing invest-
ment in HILF forecasting by the utilities, a forecast-driven
methodology for resiliency improvement gains immense
significance. Furthermore, given the availability of various
switches within the grid, PDS reconfiguration and resource
allocation in the wake of a disaster would be challenging.

Keeping the PDS energized while the HILF event is in
progress would cause safety hazards to both civilians and
operational or repair crews (reference [22] reported in-event
injury of firefighting crew due to contact with the grounded
energized power lines). Damaged energized infrastructure
can also be a source of secondary hazards (notably, public
safety power shut-off, PSPS, events in California, USA is
developed to minimize secondary hazard risk [23]) and can
delay post-disaster recovery in some scenarios (as reported by
CEC, pre-event generator shut down before tsunami or snow
avalanche is necessary to expedite restoration). In the same
line, the focus of this work is to selectively deenergize a part
of the network before the disaster strike while minimizing

its impact on the critical infrastructures to reduce its impact
on humanity. The existence of manually operable (MO) [11]
switches alongside automated/remotely operable (RO) ones
within the PDS necessitates deployment of the operational
crew for the necessary reconfiguration. Operations crews
need to be dispatched with sufficient lead time to ensure
their safe return from the hazardous zone.1 The crew executes
network reconfiguration utilizing coordinated operation of
MO and RO switches while ensuring maximal survival of
CLs through reconfiguration and proactive de-energization.
Furthermore, predicting HILF events can be challenging,
and the forecasts can change rapidly. Therefore, as HILF
events approach, crews should no longer remain deployed but
instead evacuate for safety concerns.

We observe four seemingly counterposed challenges in
the development of the proactive control strategy: (i) PDS
operators (DSOs) will rely on HILF forecasts for the proac-
tive control, (ii) the outage prediction accuracy with HILF
events can deviate significantly in a longer temporal hori-
zon [24], (iii) allowable lead-time in operational crew-
dispatch, and (iv) prior de-energization of the part of PDS,
although needed, will cause inconvenience for the civilians.
Prior de-energization can be misapplied or over-applied if the
event significantly deviates from the early forecasts. The pro-
posed two-stage proactive control framework that references
forecast revisions to reconfigure the system for an enhanced
PDS-wide resiliency helps circumvent these issues. Here,
instead of completely de-energizing a part of the PDS hours
before to ascertain safe dispatch and return of the operational
crews, we ensure the disastrous part of the PDS remains
connected through RO switches. This strategy helps us keep
a section of the PDS energized hoping that the HILF event
will clear itself while also increasing topological resilience of
the system. Hours-ahead crew deployment for the reconfigu-
ration of MO switches coordinated by RO switch operations
would facilitate the same.

Furthermore, the network will be so configured that this
disastrous area will be isolated at the last possible minute
of the disaster landfall through RO switches. The requisite
switching operation will be proactively modified based on the
available forecast until the disaster strikes. Compared to the
ones discussed in the literature review, this paper considers
the availability of multiple different switches in the PDS
and requisite crew dispatch to facilitate the operation of MO
switches within the network with the associated timeline.
The proposed framework would also encourage utilities to
study and plan for various ways a disaster may materialize
before an event and devise suitable control actions. Some
of the loads outside of the hazardous zone may experience
de-energization, while other portions of the PDS may operate
as µ-grids to maximize the survival of CLs. These scenarios
add complexity requiring advancement of the reconfiguration

1Entire PDS can become a hazardous zone during a disaster. Discussed
ML-based techniques could identify specific regions of outage depending
on system conditions, weather intensity, etc.
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methodology presented in [25]. Operation of the network
as the disaster is in progress [26], or for restoration [27] is
beyond the scope of this work.

The contribution of this paper is, therefore, threefold:
(i) Proposed a novel two-stage proactive network-

switching and resource allocation strategy that maxi-
mizes PDS CL survivability, capable of utilizing HILF
early warning and outage prediction, and considers the
availability of various switches. Here, coordinated MO
and RO switch operations are deployed hours before
by the operational crews to ensure crew safety require-
ments, while a part of the PDS infrastructures will be
deenergized minutes before the disaster makes a land-
fall. These hours- and minutes-ahead operations will be
coordinated appropriately, with hours-ahead operations
constantly updated based on revised forecasts and suit-
ably deployed depending on available lead time for the
operational crew.

(ii) Developed a new mathematical formulation for isolat-
ing possible outage zones from healthy zones, forming
µ-grids while preserving radial operability, with a
detailed mathematical guarantee. The proposed formu-
lation considers the condition where the entire PDS
must be separated into multiple µ-grids, with each
one connected to a separate substation, or if trans-
mission as the whole network is suffering from an
outage.

(iii) Developed a resiliency metric-driven performance anal-
ysis tool based on our previous research and used it to
validate the proposed algorithm utilizing the modified
IEEE 123-node test system and a real-world 45-node
µ-grid based on the CEC grid. We show that the perfor-
mance analysis tool could be used as an advisory to the
DSO, who could consider and contextualize the strategy
before deploying it, and is even suitable for any pro-
gressingweather events. A practical framework has been
developed in this regard to facilitate the same. Given
the limited operating time horizon for the DSO, the
Decision Support (DS) tool will provide the DSO with
the reconfiguration strategy. The performance analysis
tool will identify the potential impact on the PDS with
and without deployment of the reconfiguration strategy
for the operating time horizon. The situational aware-
ness (SA) tool would involve forecasted progress of the
HILF event, its impact on the PDS, and early warning
signals.

The rest of the paper is organized as follows. The
Problem Statement that formalizes the mathematical model
of the two-stage optimization problem is introduced in
Section II. In Section III, a solution framework showing
both situational awareness and decision support to the
DSO is outlined. A Numerical Analysis that contrasts the
impact of both contemporary and proposed response strate-
gies on a hypothetical and a real-world network is pre-
sented in section IV, and the Conclusion is summarized in
Section V.

II. PROBLEM STATEMENT
While a majority portion or all of a PDS can fall within the
hazardous zone during a disaster, only a finite set of nodes
will ultimately face catastrophe and subsequent outage. Such
nodes were previously captured using fragility curve [20].
Limited availability of switches across the PDS may extend
the impacts to additional lines and nodes. The correspond-
ing set of nodes can be called nodes with expected outages
(NwEO). Availability of switches can significantly reduce
the scope of the NwEO, but MO switches, such as manually
operated loadbreak switches, severely limit their deployment.
Proactive control facilitates PDS reconfiguration minimizing
NwEO and assuring the survival of the maximum number
of CLs. Proactive control also enables connectivity of the
CLs within the NwEO until the last minute of the appearance
of the disaster. Forecast-driven approaches can significantly
reduce the computational requirements compared to proba-
bilistic methods, and utilities are actively investing in HILF
forecasts, which motivates us to use HILF forecasts in devel-
oping proactive measures. However, given the associated
volatility, the network must be continuously reconfigured if
the NwEO gets updated with a sufficiently high confidence
interval (CI). The NwEO must also remain connected before
HILF makes landfall so that the associated CLs will not
face any deenergization if the threat is eliminated and facil-
itate successive reconfiguration, if needed, improving PDS
resiliency.

As previously indicated, the analysis begins with an early
warning of the HILF scenario followed by its forecasted
progress, characterizing the impact timeline of the disaster on
the PDS. HILF-oriented load and generation forecasts can be
a part of DSO’s Advanced Distribution Management System
(ADMS). As peovided in Fig. 1,2 the proposed resiliency
management system (RMS) can be a part of the ADMS.
HILF forecasting is not within the scope of this paper and is
considered to be given. Based on the forecast, the RMS tool
analyzes estimated threats on the PDS, and the DS tool within
the RMS identifies a reconfiguration strategy tomaximize the
survivability of the CLs and associated deployment timeline.
The performance analysis tool within the RMS provides the
DSO with a resiliency metric indicating forecasted impact on
the PDS, with the metric improvement following the deploy-
ment of the proposed reconfiguration strategy. Notably, the
reconfiguration will be necessary if the HILF with a high
CI falls within DSO observable time horizon. The operator
will also be provided with several landmark events, including
early-warning and associated impact on the PDS and landfall
of the weather events as SAmeasures. Furthermore, the RMS
relies on DSO to properly deploy suggested reconfiguration
action.

As discussed in [28], given the objective is to ensure the
survival of the CLs until the last minute of disaster land-
fall while also being constrained by the operation of MO

2Wildfire topographical imagery in Fig. 1 as a part of HILF event progress
are taken from: https://cimss.ssec.wisc.edu/satellite-blog/archives/34786
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FIGURE 1. Overall architecture of the proposed two-stage proactive control for distribution system resiliency.

switches, we propose a two-pronged approach. In the first
stage, we identify minimal possible NwEO through reconfig-
uring both RO and MO switches and the necessary set points
for the DERs. The timeline of the switching deployment will
be a function of available time prior to disaster landfall and
lead time for crew deployment to maximize overall resiliency.
Depending on the available relays and DGs, multiple µ-grids
can also be formed in this process. Given the solution of
stage 1, the second stage involves computation of RO switch-
ing operations and resource provision needed to keep an
optimal subset of NwEO connected with the healthy part (or
remain energized as µ-grids) until minutes before the event
materializes. This connectivity ensures reduced switching
requirements if the network must be reconfigured again while
improving the system’s topological resilience. It is trivial
that switching actions in both stages are mutually exclusive,
and combined deployment of the switching strategy would
ensure the survival of CLs until the last minutes of disaster
landfall. Requisite crew dispatch would require us to deploy
this hours ahead (HA). Furthermore, closed remote switches,
determined in the second stage, are opened as a part of the
minutes-ahead operation (MA) before the disaster strikes to
de-energize NwEO. Therefore, although the problem struc-
ture of HA and MA operations would be similar, their dif-
ferences would be captured due to their different timeline of
deployment. Notably, local generators within the NwEO will
also be disconnected as part of anti-islanding protection in
the MA operation. Without loss of generality, we also assume
that the loads are aggregated at each node and controllable
through AMI switches. The detailed deployment algorithm
will be discussed later in this paper. Please note that in-event
voltage and frequency control is beyond the scope of this
paper.

The mathematical framework for both stages of the opti-
mization problem is outlined in the following subsections:

A. STAGE 1: PRO-ACTIVE DECISION MAKING WITH
ISOLATION OF NwEO
In any emergency plan, it is important to capture crit-
ical infrastructure co-dependency [29]. In an extreme

resource-constrained scenario, especially when a HILF event
is in progress, some of the loads will be required to be
shedded, and the relative criticality could be used tomaximize
societal resiliency. In this paper, the relative importance of
the CLs and non-critical loads (NCLs) are given by factors
kCLi and kNCLi respectively (where, kCLi � kNCLi ), with
the objective function being the maximization of the value
of the served load. Consideration of such a definition for
resiliency improvement is well documented in the litera-
ture [30]. We assume that CLs and their non-critical coun-
terpart in the distributor are separable via AMI switches, and
their availability is identified using αti and β

t
i , respectively.

Additionally, PCL,ti and PNCL,ti are active power demand of
CL and NCLs, respectively. We identify the NwEO through
the integer variable λi (∈ {1, 2}). Here, λi = 1 symbolizes
that a node remains energized, and λi = 2 otherwise. Conse-
quently, the objective function becomes:

max
∑
∀t∈T

∑
∀i∈B

kCLi αti (2− λi)P
CL,t
i + kNCLi β ti (2− λi)P

NCL,t
i

(1)

Here, the optimization problem is solved for a pre-defined
temporal event horizon (identifying the DSO observable time
horizon). The constraint set for the switching and resource
allocation problem is divided into four parts as follows:
(i) radiality of the PDS, (ii) connectedness of the nodes,
(iii) power flow equations, and (iv) constraints pertaining to
the BSDs.

1) CONSTRAINTS TO ENSURE RADIALITY
To derive the resulting radial network isolating NwEO,
we extend the formulation given in [31]. Suppose W be the
set of all the branches/lines and B (i, j ∈ B) be the set of
nodes in the PDS. Each xi,j = 1 represent a permanent
line. A line can have a MO or RO switch, identified by,
yMi,j ∈ {0, 1}, and y

R
i,j ∈ {0, 1}, respectively. Consequently,

0 ≤ xi,j+ yMi,j + y
R
i,j ≤ 1 for each of the node-pairs. To ensure

radiality, we obtain a directed tree utilizing the variable zi,j,
where, if a branch is directed from node i to node j, then,
zi,j = 1 and zj,i = 0, otherwise. Furthermore, the direction of
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the branches emanating from the root node, representing the
substation, f (∈ BF ), is always away from it, or zi,f = 0. This
produces the following set of equations:

zi,j ∈ {0, 1}; ∀i, j ∈ B (2)

zi,j + zj,i = xi,j + yMi,j + y
R
i,j; ∀i, j ∈ B (3)

zi,f = 0; ∀i ∈ BF (4)

Consequently, if the resulting graph remains connected,
then,

∑
∀j:(i,j)∈W zj,i = 1 at every node except the substation.

In the current scenario, the operation of switches to isolate
NwEO will lead to multiple disconnected graphs. We must
therefore need to consider a degenerated version of the con-
dition given as: ∑

∀j:(i,j)∈W

zj,i ≤ 1; ∀i ∈ B (5)

However, as discussed in [25], the formation of a loop
remains unhindered. We utilize the following constraint to
ensure radiality for each of the disjoint graphs:

zi,j
(
Vi − Vj + ε

)
= 0; ∀i, j ∈ B and ε > 0 (6)

Lemma 1: For each connected cluster, there will be pre-
cisely one node with a maximum value of Vi.

Proof: We will prove this by contradiction. Suppose
there exist two nodes with similar Vi, which is higher than
the rest of the Vi within the connected graph. Let us name
these two nodes as j and k . Since, Vj = Vk , those two
nodes cannot have a common edge (see, (6)). Suppose, the
associated directed edges are j→ m, and k → n (directions
satisfy (6), directedness arises from (3)). If,m and n identifies
the same node, then, condition (5) will be violated. If, nodes
m and n are connected, without the loss of generality, suppose
that m→ n, and consequently, condition (5) will be violated
at node n. Otherwise, we can suppose that Vm = Vn, and
are not directly connected. Without loss of generality, we can
recursively prove that there will be a node or edge, where
either of the conditions (2) - (6) will be violated. This proof
can be easily extended for three or more nodes. �
Theorem 1: The node with maximum Vi for each con-

nected cluster will have
∑
∀j:(i,j)∈W zj,i = 0.

Proof: From Lemma 1, the uniqueness of the node i
with highest Vi signifies all the edges are directed away from
it (see, (3) and (6)). And consequently,

∑
∀j:(i,j)∈W zj,i = 0,

at that particular node. Now, to prove the exactness, let us
consider a connected sub-graph of the cluster containing
the node i, with the highest Vi, and the rest of the nodes
with exactly one branch incident on it. Suppose j is one
such arbitrarily chosen node. Also, suppose, Gm be another
sub-graph with a node m, with

∑
∀n:(m,n)∈W zn,m = 0, and

rest of the nodes with exactly one branch incident. Now, if m
is connected to j, and, m → j (5) is violated. If j → m,
then both the subgraphs are connected with the requisite
condition satisfied only at node i. Also, m → i is infeasible
by definition. This proves the uniqueness. �

Corollary 1: Condition (2), (3), (5) and (6) upholds radi-
ality for a connected graph.

Proof: Since the graph is connected, from Theorem 1,
there will be precisely one node with all the edges are directed
away from it. The connected graph’s radiality under such a
condition is already proven in [31]. �
Remark 1: Equations (2)-(5), along with (6) ensure radi-

ality of each of the part of the reconfigured part. Condi-
tion (4) enforces that the substation node will have

∑
∀j:(i,j)∈W

zj,i = 0. However, the resulting graph can still be discon-
nected. Each of the disconnected cluster will have precisely
one node with

∑
∀j:(i,j)∈W zj,i = 0. We can designate this node

as µ-grid central voltage controlled node, which is similarly
utilized in the latter part of the paper.

2) CONSTRAINTS TO ENSURE CONNECTEDNESS OF THE
NODES
Parameter λ̄i identifies whether node i will face outages, and
is defined as follows:

λ̄i =


2, ∀i ∈ F
1, ∀i ∈ Bf

0, ∀i ∈ B \
(
Bf ∪ F

) (7)

Here, F is the set of nodes facing catastrophe. Bf is the
set of nodes that are predicted to remain healthy. As for the
undetermined set of nodes, as given in (10), it is trivial that if
any two adjacent nodes are connected (xi,j + yMi,j + y

R
i,j = 1),

then λi = λj. Notably, the values of λi are independent of
the direction of the directed rooted tree indicated by zi,j. The
outage information is expected to be provided by the HILF
forecaster. The energization status of the nodes relies on the
predicted HILF scenario and is given in (9).

λi ∈ {1, 2}; ∀i ∈ B (8)

λi ≥ λ̄i; ∀i ∈ B (9)(
λi − λj

)
(xi,j + yMi,j + y

R
i,j) = 0; ∀(i, j) ∈ W (10)

Remark 2: Only the energized section of the network will
have λi = 1.

Proof: As determined by, xi,j + yMi,j + yRi,j, if an edge
between nodes i and j exists, then, from (10), λi = λj.
Therefore, given expected HILF scenario indicated by λ̂i, all
the NwEO will have λi = 2. The connectivity of switches
determines the value of λi for adjacent nodes. As for the rest
of the nodes, associated λi are driven by the objective func-
tion. Our objective function is equivalent to, maximization
of the weighted sum of (2− λi), which indirectly enforces
λi = 1 for the energized counterpart. �
Now, we have to identify directed clusters containing only

the energized part of the PDS (identified by ψi,j). Let us con-
sider a directed branch between nodes i and j. Since, λi = 2 at
the NwEO, then for λi+λj ≥ 3, the associated branch cannot
remain energized, or, ψi,j = ψj,i = 0. For λi + λj < 3, the
associated branch is retained as a healthy branch. Note that
the value of zi,j

(
λi + λj − 3

)
is limited within [−1, 1]. Thus
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the following set of equations are derived:

ψi,j ∈ {0, 1}; ∀(i, j) ∈ W (11)

ψi,j ≤ zi,j; ∀(i, j) ∈ W (12)

zi,j
(
λi + λj − 3

)
≤ (1− ψi,j)− εψi,j; ∀(i, j) ∈ W (13)

zi,j
(
λi + λj − 3

)
≥ −ψi,j; ∀(i, j) ∈ W (14)

Here, (11)-(14) mathematically represent the two prior
constraints as outlined. Notably, ε is a small positive real
number that linearizes the conditional expression.
Remark 3: Equations (2)-(14) identify the directed,

healthy, and radial clusters through the operation of the
necessary switches. NwEO set will be automatically isolated.

Note that ensuring radiality and connectedness of the ener-
gized nodes does not guarantee µ-grid formation and has to
be driven by the suitable relays and DGs availability. Without
a µ-grid control center, the DSOs interface can still control
the entire distribution grid.

3) POWER-FLOW EQUATIONS
As shown in (15)-(16), power can flow in both the direc-
tions along the path symbolized by ψi,j. The nodal balance
equations for power flow are driven by the variable (2− λi),
identifying the healthy part, and is given in (17)-(18).

−SLi,jψi,j ≤ pti,j ≤ S
L
i,jψi,j; ∀(i, j) ∈ W ,∀t ∈ T (15)

−SLi,jψi,j ≤ qti,j ≤ S
L
i,jψi,j; ∀(i, j) ∈ W ,∀t ∈ T (16)

Pti = α
t
i (2−λi)P

CL,t
i +β ti (2−λi)P

NCL,t
i −

∑
∀DG

PDG,ti

−

∑
∀BSD

PBSD,ti − PF,ti ; ∀i ∈ B,∀t ∈ T (17)

Qti = α
t
i (2−λi)Q

CL,t
i +β ti (2−λi)Q

NCL,t
i −

∑
∀DG

QDG,ti

−

∑
∀BSD

QBSD,ti − QF,ti ; ∀i ∈ B,∀t ∈ T (18)

Here, αti and β
t
i represent interval-wise connectivity status

of critical and non-critical nodes (∈ {0, 1}). Additionally,PF,ti
and QF,ti are the parameters representing active and reactive
power injection from the substation. Also, PCL,ti and QCL,ti
are forecasted active and reactive power demands of CLs,
while, PNCL,ti and QNCL,ti are forecasted active and reactive
power demands of NCLs. Additionally, PDG,ti and QDG,ti are
the variables representing active and reactive power injection
from the DGs. Finally, PBSD,ti and QBSD,ti are the active and
reactive power injection from BSDs. In (17)-(18), Pti and Q

t
i

represent nodal extraction of active and reactive power. Also,
SLi,j is the line flow limit.

8DG
i ≤ (2− λi); ∀i ∈ B (19)(
PDG,ti

)2
+

(
QDG,ti

)2
≤ 8DG

i

(
SDGi

)2
; ∀i ∈ B, ∀t ∈ T (20)

8DG
i PDGi ≤ PDG,ti ≤ 8DG

i PDGi ; ∀i ∈ B,∀t ∈ T (21)

8DG
i RRDGi ≤ PDG,t+1i − PDG,ti

≤ 8DG
i RRDGi ; ∀i ∈ B, ∀t ∈ T (22)

8DG
i QDGi ≤ QDG,ti ≤ 8DG

i QDGi ; ∀i ∈ B, ∀t ∈ T (23)

If a DG connected at node i remains healthy (determined
by DG availability8DG

i and nodal energization status), active
and reactive power injection will be limited by its capability
curve (20)-(23). Here, SDGi is the rating of DGs. Furthermore,
PDGi , PDGi are lower and upper limits of active power genera-
tion, respectively, from DGs, if operational. Similarly, QDGi ,

QDGi are lower and upper limits of reactive power generation,
respectively. Also, RRDGi , RRDGi identifies ramping capabili-
ties of the DGs.

Given the nodal node injections, the line-flow equations
(active and reactive power line flow being pti,j and q

t
i,j respec-

tively) as a part of the linearized dist-flow equations [32] are
given by:∑
∀j:(i,j)∈W

ptj,i − p
t
i,j = Pti ; ∀i ∈ B, ∀t ∈ T (24)

∑
∀j:(i,j)∈W

qtj,i − q
t
i,j = Qti ; ∀i ∈ B, ∀t ∈ T (25)

(
pti,j
)2
+
(
qi,j
)2
≤

(
SLi,j
)2
; ∀(i, j) ∈ W , ∀t ∈ T (26)

Note that the connectivity of energized lines in (26) are
indirectly accounted for in (15)-(16). For the network voltage
to stay within limits while maintaining the voltage at the
substation, or, µ-grid voltage-controlled node at the predeter-
mined reference voltage, vref , the following set of equations
must be satisfied:

vti ≤ vtj + 2
(
Ri,jpti,j + Xi,jq

t
i,j

)
+M (1− ψi,j);

∀(i, j) ∈ W , ∀t ∈ T (27)

vti ≥ vtj + 2
(
Ri,jpti,j + Xi,jq

t
i,j

)
−M (1− ψi,j);

∀(i, j) ∈ W , ∀t ∈ T (28)

−M (λi − 1)+ vi
≤ vti ≤ vi +M (λi − 1) ;

∀i ∈ B, ∀t ∈ T (29)1−
∑

∀j:(i,j)∈W

zj,i

(vti − vref )
= 0; ∀i ∈ B, ∀t ∈ T (30)

Equation (30) utilizes Remark 2. Here, vti refers to the
squared magnitude of nodal voltages. Also, vi and vi are
the squared nodal voltage lower and upper limits. The indi-
cated voltage lower and upper limits remain active only at
the healthy section of the PDS (note the use of ψi,j). This
constraint is represented through the big-Mmethod (M being
a large positive real number). Additionally, ri,j and xi,j are
resistances and reactances of the concerned lines.
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4) CONSTRAINTS PERTAINING TO BATTERIES
Due to the finiteness of the capacity of power-electronic
converter-interfaced batteries, they can support the load
demand only for a limited operating horizon. BSDs are capa-
ble of operating in all four quadrants, and their capability
curve is given by (31). Here, SBSDi is the ratings of BSDs.(
PBSD,ti

)2
+

(
QBSD,ti

)2
≤ (2− λi)

(
SBSDi

)2
;

∀i ∈ B, ∀t ∈ T (31)

Additionally, asymmetric charging and discharging effi-
ciencies due to lossy batteries and converters should also
reflect in the state of the charge (SOC) of the battery. Let,
δ
BSD,t
i (∈ {0, 1}) symbolizes charging and discharging status,
then:

PBSD,ti = PBSD,t,+i − PBSD,t,−i ; ∀i ∈ B, ∀t ∈ T (32)

0 ≤ PBSD,t,+i ≤ δ
BSD,t
i SBSDi ; ∀i ∈ B, ∀t ∈ T (33)

0 ≤ PBSD,t,−i ≤

(
1− δBSD,ti

)
SBSDi ; ∀i ∈ B, ∀t ∈ T

(34)

Given the charging/discharging status, (35) is used to cal-
culate the SOC of the batteries. As shown in (36)-(37), the
operating SOC (SOCti ), is limited by SOCi, SOCi, and initial
SOC is the parameter defining initial status, SOCinii .

SOCti = SOCt−1i −K
(
δi,tP

BSD,t,+
i η−1dch

+
(
1− δi,t

)
PBSD,t,−i ηch

)
; ∀i ∈ B, ∀t ∈ T (35)

SOCti ∈ {SOCi,SOCi}; ∀i ∈ B, ∀t ∈ T (36)

SOC0
i = SOCinii ; ∀i ∈ B (37)

B. STAGE 2: PROACTIVE SAFETY-CONSTRAINED
SWITCHING OPERATION WITHOUT
ISOLATING NwEO
The NwEO will be deenergized through RO switches if
the predicted HILF scenario persists until minutes before the
disaster materializes. To ensure minimal disturbances in the
rest of the system upon their deenergization, we consider
zero flow through the RO switches connecting NwEO. Also,
the PDS topology, line-flow, load, generation, and substation
injection schedule of the healthy part of the grid, as obtained
using the first stage of the optimization problem, is held
constant. Hence, the decision variables in Stage 2 include
the switching operation to ensure connectivity of the NwEO,
the switching condition of loads and DGs, and power output
from DGs and batteries within NwEO to ensure local load-
generation balance.

Suppose B′ is the set of nodes in the healthy section of
the network (with λ∗i = 1) obtained after solving Stage 1
(described in the previous subsection). Also, for i, j ∈ B′,
ψ∗i,j are the associated directional connectivity. Let, αt,∗i ,

β
t,∗
i , PDG,t,∗i , PBSD,t,∗i , pt,∗i,j be the optimal connectivity status

variables corresponding to CL and NCLs, power output from
DGs and BSDs, and line flows obtained from Stage 1 of the

problem. While, for i, j ∈ B\B′, α̂ti , β̂
t
i , P̂

DG,t
i , P̂BSD,ti , p̂ti,j are

the associated Stage 2 variables. Determined closed switches
in Stage 1 are treated as permanent lines to calculate x̂i,j,
while, optimal ŷRi,j is calculated only for remotely operated
opened switches obtained in Stage 1. Consequently, variables
in first and second stage are related as follows:

ẑi,j ≥ ψ∗i,j; ∀(i, j) ∈ W (38)

λ̂i ≤ λ
∗
i ; ∀i ∈ B (39)

αti = α
t,∗
i + (λ∗i − 1)α̂ti ; ∀i ∈ B (40)

β ti = β
t,∗
i + (λ∗i − 1)β̂ ti ; ∀i ∈ B (41)

P̂DG,ti = PDG,t,∗i + (λ∗i − 1)P̂DG,ti ; ∀i ∈ B (42)

P̂BSD,ti = PBSD,t,∗i + (λ∗i − 1)P̂BSD,ti ; ∀i ∈ B (43)

Q̂DG,ti = QDG,t,∗i + (λ∗i − 1)Q̂DG,ti ; ∀i ∈ B (44)

Q̂BSD,ti = QBSD,t,∗i + (λ∗i − 1)Q̂BSD,ti ; ∀i ∈ B (45)

pti,j = ψ
∗
i,jp

t,∗
i,j + (1− ψ∗i,j)p̂

t
i,j; ∀(i, j) ∈ W ,∀t ∈ T

(46)

qti,j = ψ
∗
i,jq

t,∗
i,j + (1− ψ∗i,j)q̂

t
i,j; ∀(i, j) ∈ W , ∀t ∈ T

(47)

Connectivity of the directed subgraph obtained in Stage 1
is enforced through (38)-(39). The revised connectivity of
CLs, NCLs, active and reactive power injection from DGs
and batteries for the NwEO part will be controlled through
(λ∗i − 1), and is given in (40)-(45). Revised flow will be
governed by (1 − ψ∗i,j). Variables determined in Stage 1 will
remain as it is, and, all the constraints corresponding to radi-
ality, nodal connectivity, power flow balance equations, and
constraints pertaining to the battery need to be considered.
Also, as given in (48)-(49), the focus is only on the operation
of remote switches.

ẑi,j + ẑj,i = x̂i,j + ŷRi,j; ∀i, j ∈ B (48)(
λ̂i − λ̂j

)
(x̂i,j + ŷRi,j) = 0; ∀(i, j) ∈ W (49)

The objective function used in the second stage remains
similar to first stage, and is given by:

max
∑
∀t∈T

∑
∀i∈B′

kCLi (2− λ̂i)αtiP
CL,t
i + kNCLi (2− λ̂i)β tiP

NCL,t
i

(50)

III. SOLUTION METHODOLOGY
A. THE PROACTIVE DECISION-MAKING FRAMEWORK
Typically grid-connected PDS is expected to operate as an
islanded µ-grid as necessary. Previously discussed autosyn-
chronizers, available switches (both RO and MO), DGs, and
protection devices facilitate such an endeavor. While retail
markets can exist; when it is imminent that the PDS would
operate at limited capacity with a high CI due to an impending
disaster, with the availability of controllable loads, DERs, and
storage devices, the DSO would consider charging its BSDs
to a sufficient level to minimize the impact. The operator
would be alerted through the SAmechanism. Still, the system
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FIGURE 2. Proactive network switching and resource allocation framework with dataflow. Region shaded in green constitutes the proposed
algorithm and the focus of this paper. Boxes marked in blue, red and yellow are for SA, DS and external forecast module respectively.

would continue to operate economically unless the associated
HILF impact is visible in the DSO observable time hori-
zon. The entire decision-making framework, along with the
landmark points where the DSO interacts with the proposed
algorithm, is provided in Fig. 2, which is expanded from the
framework provided in [28].

If the HILF event is forecasted with high CI and the
resiliency index deteriorates within the DSO’s observable
time horizon, the DSO would be provided with informa-
tion about the looming threat through the SA mechanism
and associated performance analysis (see Fig. 1). Multiple
resiliency indices with varying details exist in the literature to

identify the implications of these events [28], [33]. We utilize
the indices given in our earlier research [34] (not explicitly
shown here for brevity), which relies on (i) the topological
robustness of the PDS, (ii) the extent of the failure of the
system given prior experience, (iii) the capacity to serve CLs
in the face of additional failures, (iv) CL demand actually
served, and (v) resource available from DGs and BSDs.
If the forecast is beyond a specific CI and the resiliency
score as a part of the performance analysis tool within the
RMS deteriorates, the proposed two-stage methodology will
be automatically invoked. Here, the DSO would consider
halting the market operation and switch to resiliency mode.
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Subsequently, the SA signal is sent to the operator to remain
alert. The metric is suitably adapted to work with the fore-
casted event and will be utilized to provide the operator with
the what-if analysis of the system condition (with and without
deployment of resiliency improvement measures).

Possible DS for the DSO relies on two major factors,
(i) resource availability and (ii) available lead time for crew
dispatch. As already indicated, given high uncertainty regard-
ing the landfall of HILF events, crew deployment to oper-
ate some of the MO switches to reconfigure the system or
deenergize a part of the system as the situation demands
get severely limited. Nevertheless, available infrastructure
resources in terms of deployed smart sensors and monitoring
devices at desirable locations facilitate monitoring the system
in real-time, facilitating the operation of some of the RO
switches. As shown in Fig. 1, the proposed algorithm is capa-
ble of being integrated with an external forecaster through
a power-weather translation map in SCADA, while various
sensor statuses, D-PMUs, AMI information, storage status,
along with locations of CLs are also available in SCADA.
Given typical load and generation forecasts may not be rea-
sonable enough3 HILF-driven forecasts will be utilized.
Given the supplied information, the proposed optimization

engine will calculate: (i) switching strategy (for both MO and
RO switches), (ii) desired set-points allocation for the DGs,
and (iii) resource allocation for the BSDs for the discussed
Stage 1 and Stage 2 within the observable operating horizon
for the DSO. As discussed, combined Stage 1 and 2 outputs
will be provided to the DSO as DS for HA deployment. Here,
the DSO will also be provided with the resiliency metric for
the observable period and a what-if scenario utilizing the
resiliency metric if the proposed DS is not deployed (see
Fig. 6 for an example and associated discussion). The system
status will be continuously monitored for any change in the
forecast. Depending on the lead time and current system oper-
ating condition, the DSO will be periodically provided the
necessary DS and SA if the forecast evolves. Notably, if the
threat vanishes with significant CI at any point, the system
would move to economic mode, and the alert status would
be removed. Else, once the HILF event is minutes away,
as discussed, the RO-operated switches determined in Stage 2
would be opened to isolate the NwEO. Given switching
requirements for both Stage 1 and 2 were calculated to facil-
itate HA deployment, real-time computation needs would be
completely alleviated, especially with mixed-integer prob-
lem formulation. As discussed in Section III-B, appropriate
linearization strategies are available in the literature to con-
vert it into a mixed-integer linear program (MILP). While
the scope of proactive reconfiguration ends here, continuous
monitoring and corrective reconfiguration will be pursued

3Two examples can be referred to here: (i) lack of weatherization led
to outage of several power plants during Texas power outage in 2021 [2],
(ii) heatwave, especially during wildfire events, would lead to extreme air
conditioning requirements, which generally do not get captured in traditional
forecasters.

until the treats are completely eliminated, which is the scope
of another paper.

Notably, the SA mechanism is utilized to alert the system
operator, and therefore the information flow is unidirectional,
while the DS mechanism relies on operator feedback to
execute the control actions, making the information flow
bidirectional.

B. CONSTRAINTS LINEARIZATION TECHNIQUES OF THE
OPTIMIZATION PROBLEM
The nonlinear equations in the problem formulation can be
divided into three major categories discussed as follows:

1) CONNECTIVITY CONSTRAINTS
The primary focus here is to linearize the product of a binary
and an integer variable. For example, one may refer to eq. 6.
Suppose, Zi,j = zi,j

(
Vi − Vj + ε

)
, then this variable can be

linearized using big-M method as follows:

− |N | ≤ Zi,j ≤ |N | (51)

− |N | zi,j ≤ Zi,j ≤ |N | zi,j (52)

Vi − Vj + ε − (1− zi,j) |N | ≤ Zi,j

≤ Vi − Vj + ε + (1− zi,j) |N |

(53)

Here, |N | represents the number of nodes within the PDS.
Notably, if ε = 1, it is notable that

(
Vi − Vj + ε

)
would

be limited by |N |. Furthermore, suitably chosen big-M helps
ensure faster convergence of the optimization problem.

2) LINE FLOW CONSTRAINTS
Next consider a polygon enclosed within a circle is consti-
tuted ofW equal segments, then the corner points lying on the
circle of radius |V| can be given by (|V|, 0),

(
|V| cos

(
2π
W

)
,

|V| sin
(
2π
W

))
, · · · ,

(
|V| cos

(
2π (W−1)

W

)
, |V| sin

(
2π (W−1)

W

))
.

Given any two adjacent corner points,
(
Vp,Wp

)
and

(
Vq,Wq

)
,

and supposing, (V ,W ) be an arbitrary point lying on the
polygon approximate, the segment representing the linear
approximation can be given by,

V
(
Wq −Wp

)
+W

(
Vp − Vq

)
=
(
VpWq −WpVq

)
(54)

Suitably chosen (Vp,Wp), (Vq,Wq) will result in (VpWq −

WpVq) ≥ 0, for each segment of the polygon approximation.
Now, suppose, (V ,W ) to be an arbitrarily chosen point on
the associated two-dimensional space. Because the common
region needs to contain (0, 0), polygonal inner approximates
can be given by,

V
(
Wq −Wp

)
+W

(
Vp − Vq

)
≤
(
VpWq −WpVq

)
; ∀p, q

(55)

3) VOLTAGE CONTROL NODE REQUIREMENTS
The Big-M method is applied for linearizing the product
of a binary and a continuous variable. Equation (30) is
one such equation that includes the product of a binary
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and a continuous variable, which is also similar to the
product of a binary and integer variables. Consider Y t

i =(
1−

∑
∀j:(i,j)∈W zj,i

) (
vti − v

ref
)
, then we can linearize this

variable as follows:

−1vmax
≤ Y t

i ≤ 1v
max (56)

−1vmax

1−
∑

∀j:(i,j)∈W

zj,i

 ≤ Y t
i

≤ 1vmax

1−
∑

∀j:(i,j)∈W

zj,i


(57)

vti−v
ref
−

∑
∀j:(i,j)∈W

zj,i1vmax
≤ Y t

i

≤ vti−v
ref
+

∑
∀j:(i,j)∈W

zj,i1vmax

(58)

Here, 1vmax is suitably chosen so that −1vmax
≤ vti −

vref ≤ 1vmax.

IV. TEST SYSTEMS AND SIMULATION RESULTS
The proposed framework has been tested and validated on
a modified IEEE 123-node test system and a real-world
45-node isolated µ-grid model based on the CEC Alaska
system. The location of MO and RO switches for both the
modified IEEE 123-node test system and 45-node µ-grid are
shown in Figs. 4 and 5. Here, the nodes and the lines within
the region identified by A (dark gray region) are expected
to face catastrophe, and with the limited availability of RO
switches, all the nodes within region B (light gray part) will
be required to be isolated; defining the NwEO. Locations of
local DGs and BSDs, along with CLs and NCLs, are also pro-
vided. The CLs and NCLs are connected via AMI switches
and are individually and remotely controllable to ensure
load-generation balance with limited resource availability.
All the DGs and BSDs are equipped with anti-islanding
protection, where they will be automatically de-energized
upon realizing the absence of a healthy network or inputs
from a µ-grid controller. All the BSDs have charging and
discharging efficiencies of 0.95 and 0.90, respectively. This
paper assumes that appropriate relays are located throughout
the PDS (especially across both RO and MO switches) for
seamless disconnection and re-connection of µ-grids accord-
ing to IEEE 1547-2018 standards.

For analysis, it is assumed that the values of the served
loads remain similar at every node at 100 and 10, respectively,
for the critical and non-critical counterparts. It is considered
that the entire PDS remains under the hazardous zone, with
eight intervals of equal duration being the DSO observable
time horizon with a longevity of 15 minutes each. Given the
uncertainty of the HILF events, the crews won’t be deployed
if the event is three intervals away.We assume the availability

of an adequate number of operational crews, facilitating a
quick deployment of MO switches.

A. RESILIENCY METRIC EVALUATION
Given the HILF event forecast, the following three scenarios
are considered in this paper to evaluate the efficacy of our
proposed methodology:
i. the proposed reconfiguration strategy is not deployed

with NwEO isolated minutes before;
ii. the PDS is proactively reconfigured, and only switching

actions depicted in Stage 1 is deployed as HA oper-
ation (NwEO are de-energized well before the disas-
ter strikes); and hence, the healthy section of the PDS
remains unharmed following the disaster; and

iii the PDS operates according to the proposed strategy
(see Fig. 2). Switching actions are periodically reviewed
with the propagation of disaster events, while the closed
switches determined at the second stage are opened
minutes before the event’s arrival.

The resiliency index of the system for all the three scenar-
ios is given in Fig. 3 for both the considered IEEE modified
123-node test system and 45-node real-world test system.
The switching requirements of the PDS are presented in
Figs. 4 and 5 respectively. The underlying two-stage opti-
mization problem converges within ≈250s (with a Core-i7
processor and 32 GB of RAM), indicating the real-world
deployability of the proposed algorithm.

As seen from the figure, in scenario (i), the resiliency
index of the PDS remains very high until the disaster strikes.
The limited RO switches with no preparation reduce the
associated index to a meager value following the arrival of
the disaster. In scenario (ii), prior reconfiguration drives the
post-disaster resiliency index to a very high value. However,
earlier de-energization of the NwEO reduces the pre-event
resiliency index significantly. The post-disaster performance
in scenario (iii) is similar to scenario (ii). Partial survival of
NwEO in the pre-event operation leads the resiliency index
to remain higher than that of scenario (ii). However, limited
local generation availability and no flow requirement from
the healthy part to NwEO enforces that only a partial set of
CLs will be served, resulting in a lower resiliency index than
the no-action scenario (scenario i).

B. SWITCHING AND RESOURCE ALLOCATION STRATEGY
FOR MODIFIED IEEE 123 NODE DISTRIBUTION NETWORK
Here, as a part of the economic operation, switches 13-152,
18-135, 54-94, 97-197, and 61-610 in Fig. 4 operate in a
normally closed mode. An alternative path to a CL at 610 of
2456 -36.30◦ kW is also available through a line of the capac-
ity of 200 kVA. A BSD is also available at node 610. The
HILF scenario is assumed to damage the energized lines and
nodes as shown in the dark grey shaded region (region A) in
Fig. 4. If the system was operating in economic mode when
the disaster strikes, all the CL connected at nodes 65, 114,
and 76 will experience outages. CL at node 610 won’t suffer
any outages with make-before-break switching.
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FIGURE 3. Varying resiliency metric with proactive control.

FIGURE 4. Optimally reconfigured modified IEEE 123-node test system.

Alternatively, with the two-stage algorithm, the efficacy
of Stage 1 is also shown in Fig. 4, where CLs at nodes
114 and 610will continue to be served during the contingency
due to proactive control actions. It is important to note that
the limited transmission corridor between 13-610 and the
finiteness of the energy stored within the BSD imposes addi-
tional challenges to serving the associated CL. The switching
action required in Stage 2 of the problem is also provided.
Here, remotely operable switches 61-610 remain closed until
disaster strikes, allowing survival of the NwEO in case the
HILF forecasts change significantly. While the flow through
the corresponding switch remains at zero, the availability
of the DG at node 57 ensures that the CL at node 65 is
served until disaster strikes. Unavailability of local generation
dictates that CL at 76 will not be served.

C. SWITCHING AND RESOURCE ALLOCATION STRATEGY
FOR ISOLATED 45-NODE REAL WORLD CEC µ-GRID
Here, we consider that lines 101-104, 101-136, 104-105,
104-112, 104-118, 104-127, and 104-141 are normally closed

FIGURE 5. Optimally reconfigured modified isolated µ-grid as proactive
measure.

during economic operation mode. Here, the HILF scenario is
predicted to disrupt nodes 118, 119, and 123. Generators D1,
D2, and D3 are also considered to be in the path of disaster
(in a realistic scenario, such as a snow avalanche). In this
configuration, without proactive control, not only CLs at
nodes 121 and 122 will be disrupted following the event, but
the traditional practices also recognize that the event-stricken
energized DGs usually suffer severe damages, resulting in
post-disaster delayed recovery.

It is apparent that, through proactive control, the CLs at
nodes 121 and 122 can be supplied through an alternative
route (see Fig. 5). Since most of the lines available for
reconfiguration are manually operated, the proactive control
gains immense significance in this case. Additionally, since
the shed region has no local generation, none of the loads can
be served during the contingencies. To alleviate this issue and
demonstrate the efficacy of the proposed algorithm, we allow
the power to flow through remotely operable switches. Con-
sequently, we observed that node 118 remains live until min-
utes before disaster strikes, and the NCLs at node 118 is
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FIGURE 6. DS provided to operate the grid as multi-µ-grid system as the weather event progresses. (a) → (b) → (c) → (d) → (e) → (f).
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still served. However, since the rest of the affected nodes
are connected via manual switches, those nodes will remain
de-energized until the disaster dissipates.

D. SWITCHING AND RESOURCE ALLOCATION STRATEGY
WITH PROGRESSING WEATHER EVENT
Given that the HILF events are highly unpredictable, the
operators would have to often operate with limited CI in the
prediction. Furthermore, limited lead-time for safe deploy-
ment of crews also affects some of the decision-making,
as shown in Fig. 2. As discussed, with evolving HILF event
and possible affected regions, the PDS would be required to
be continuously reconfigured until the eventmaterializes. The
DSOwould be provided with the reconfiguration strategy and
the resiliency metric for the time interval based on which the
metric was calculated.

The efficacy of the algorithm is shown in Fig. 6, where
the reconfiguration strategy along with µ-grid formation,
along with the resiliency with and without deployment of
the proposed DS is depicted, which will ultimately be pro-
vided to the DSO as DS.4 As shown in the figure, the HILF
scenario is revised in time steps 1, 2, 3, and 4, which could
be obtained from established ML-based outage predictors.
Given the assumption that an adequate number of crew is
available, manual switching operations could be carried out
instantly, and crews will not be deployed if the disaster is
three time steps away. Note that DS won’t be provided if
no changes are reported in the HILF forecaster, and ADMS
would assume generation control.

As shown in Fig. 6(a), given the HILF scenario, three
networked µ-grids, namely, A, B, and C, are expected to
form. Given node 37 is expected to be a NwEO, the MO
switch between nodes 151-300 remains open, and µ-grid
B is operated in islanded mode. NwEO will be isolated if
the said HILF event materializes with RO switch between
nodes 18-135. However, if the proposed DS strategy was not
executed, although the ability to serve a majority of the loads
would result in a high enough pre-event metric, which gets
significantly lowered following the occurrence of the disaster.
As illustrated in Fig. 6(b), at time step 2, the threat at NwEO
37 is projected to get eliminated, but node 610 is shown to be
a NwEO. Given the current configuration, since the NwEOs
can be isolated through remote switches, resiliency met-
ric with and without reconfiguration remains similar. Here,
node 610 was isolated with the associated remote switch,
and MO switch between nodes 151-300 has been closed
given sufficiently available lead time. While the closing of
the MO switch would lead to µ-grid B no longer operating
in isolation, this has no significant impact on the resiliency
metric. Subsequently, as depicted in Fig. 6(c), the HILF event
is predicted to evolve, and node 197 is now expected to be a
NwEO, prompting crew deployment to open the closed MO

4Here, we assume that DSO deploys the suggested DS, and is used to
calculate the resiliency metric if the said DS is not deployed for the next
time step.

switch between nodes 151-300. Here,µ-grid Bwould operate
in islanded mode and would be deenergized if the HILF
materializes. Notably, if the MO switch is not opened, nodes
47, 48, and 49 containing CLs would have to be deenergized,
significantly reducing the resiliency metric.

HILF event was further revised in the subsequent time step,
prompting µ-grid B to be no more under threat. However,
given the available lead time, the crew to operate the MO
switch won’t be deployed, and µ-grid B would continue to
operate as islanded. Given the threatened region could be
isolated through RO switches, the reconfiguration strategy as
DS has no impact on the resiliency metric. The threat forecast
didn’t change for the next two intervals. Notably, RO switches
between nodes 13-152 remained open to operate µ-grid C
as islanded and will be deenergized as shown in Fig. 6(f).
Furthermore, CL at node 76 would remain undelivered given
the absence of local DGs. Notably, the scope of the proposed
proactive controller is limited to the landfall of the HILF
event.

V. CONCLUSION
A two-stage proactive network switching and resource allo-
cation strategy for supply continuity to the CLs during HILF
events has been proposed in this work. The proposed algo-
rithm relies on external early event warnings and HILF fore-
casts to proactively de-energize a part of the PDS, reducing
risks for system impact caused by the unplanned outage of
live components as the event propagates, with possible faster
recovery following the event. Here, the operational crews are
dispatched to configure both manually and remotely operable
switches for the maximal value of the load being served hours
before the event while further maximizing it by allowing the
loads to remain energized minutes before the event strikes.
Along with network switching and resource allocation strat-
egy, the operator is provided with the benefits of deployment
of the suggested strategy through a resiliency metric. The
provision of continuous rectification with progressing HILF
events is also considered. The developed mathematical model
is demonstrated to ensure radiality while isolating healthy
parts from nodes with expected outage (NwEO), possibly
forming multiple isolatedµ-grids. The utility of the proposed
strategy is demonstrated through a modified IEEE 123-node
network and an isolated 45-node real-world microgrid in
Alaska, considering realistic case scenarios. Compared to
solely proactive isolation and switching, the strength of the
proposed strategy is demonstrated. Interactive situational
assessment and decision support would significantly help the
operator, especially during stressful operating conditions as
the HILF event progresses. The robustness and scalability
of the proposed resiliency strategy are significant improve-
ments to traditional HILF emergency response. The proposed
framework could be expanded to real-world scenarios with
limited crew availability and road situations, and possible
delays in the deployment of the control strategy. Uncertainty
in the system-wide load demand could also be judiciously
incorporated.
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ACRONYMS
Acronyms used in this paper are tabulated below:

ADMS Advanced Distribution Management System.
AMI Advanced Metering Infrastructure.
BSDs Battery Storage Devices.
CEC Cordova Electric Cooperative.
CI Confidence Interval.
CLs Critical Loads.
D-PMU Distribution-level Phasor Measurement Unit.
DERs Distributed Energy Resources.
DGs Diesel Generators.
DS Decision Support.
DSOs Power Distribution System Operators.
HA Hours Ahead.
HILF High-Impact Low Frequency.
IBRs Inverter-based Resources.
ICTs Information and Communication Technology.
MA Minutes ahead (operation).
MILP Mixed-Integer Linear Program.
MO Manually Operable (switch).
NCLs Non-critical Loads.
NwEO Nodes with Expected Outages.
PDS Power Distribution Systems.
RMS Resiliency Management System.
RO Automated/remotely Operable (switch).
SA Situational Awareness.
SCADA Supervisory Control and Data Acquisition.
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